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Abstract Grasshopper Optimization Algorithm (GOA)
was modified in this paper, to optimize multi-objective
problems, and the modified version is called Multi-
Objective Grasshopper Optimization Algorithm (MOGOA).
An external archive is integrated with the GOA for saving
the Pareto optimal solutions. The archive is then employed
for defining the social behavior of the GOA in the multi-
objective search space. To evaluate and verify the effec-
tiveness of the MOGOA, a set of standard unconstrained
and constrained test functions are used. Moreover, the pro-
posed algorithm was compared with three well-known opti-
mization algorithms: Multi-Objective Particle Swarm Opti-
mization (MOPSO), Multi-Objective Ant Lion Optimizer
(MOALO), and Non-dominated Sorting Genetic Algorithm
version 2 (NSGA-II); and the obtained results show that the
MOGOA algorithm is able to provide competitive results
and outperform other algorithms.
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1 Introduction

Solving muli-objective problems is one of the big chal-
lenges in different applications such as power and energy
[1], Robotics [2–4], bioinformatics [5], mechanical engi-
neering [6], and chemoinformatics [7, 8]. In the multi-
objective problem, there is no single optimal solution, but
rather a set of alternative solutions represent the optimal
solutions. These solutions are optimal when no other solu-
tions in the search space are superior to them when all
objectives are considered; these solutions are known as
Pareto Optimal (PO) solutions [9]. This problem can be han-
dled by combining the objectives into one single objective
with a set of weights. These weights represent the impor-
tance of each objective. However, the distribution of the
weights does not guarantee finding the optimal solution
[10]. A multi-objective formulation of the multi-objective
problems is capable of exploring the behavior of the prob-
lems across a range of parameters and operating conditions
[11]. In the multi-objective optimization algorithm, there
is no single objective and the goal is to optimize different
objectives. Hence, a set of solutions including the optimal
solutions represents various trade-offs between different
objectives [12–14].

Evolutionary algorithms were introduced by David
Schaffer for optimizing multi-objective problems [15–17].
Since then, a significant number of studies have been intro-
duced for developing multi-objective evolutionary algo-
rithms. The evolutionary algorithms are gradient-free and
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they can escape from local optima traps. The literature
shows that the evolutionary algorithms can approximate the
true Pareto optimal solutions of multi-objective problems
effectively. Many evolutionary algorithms were employed
for optimizing multi-objective problems such as Non-
dominated Sorting Genetic Algorithm (NSGA-I) [18], Non-
dominated Sorting Genetic Algorithm version 2 (NSGA-II)
[19], Strength-Pareto Evolutionary Algorithm (SPEA) [20],
Multi-Objective Particle Swarm Optimization (MOPSO)
[21–23], Multi-Objective Evolutionary Algorithm based on
Decomposition (MOEA/D) [24], and Pareto-frontier Dif-
ferential Evolution (PDE) [25]. According to the No Free
Lunch (NFL) theorem [26], the superior performance of
an optimization algorithm on a class of problems or appli-
cations cannot guarantee the similar performance on other
problems.

Grasshopper Optimization Algorithm (GOA) was pro-
posed recently and it has been proven to benefit from its
high exploration while showing very fast convergence speed
toward the optimal solutions [27]. In GOA, the special
adaptive mechanism smoothly balances the exploration and
exploitation phases which makes the GOA potentially able
to cope with the difficulties of multi-objective problems
and outperform other optimization algorithms. As reported
in [27], the computational complexity of GOA is better
than the complexity of many other optimization algorithms.
These reasons motivated our attempts to propose a multi-
objective optimizer inspired from the GOA. In this paper,
we introduce a multi-objective variant of GOA, termed
MOGOA, and employed it for optimizing constrained and
unconstrained testing functions. A distinguishing feature of
MOGOA is that an external archive which was integrated
to the GOA algorithm to store non-dominated solutions.
Moreover, the multi-objective version of the GOA has been
proposed using the features of original GOA.

The rest of the paper is organized as follows. Section 2
presents some of the related work. Definitions and prelim-
inaries of optimization algorithm, i.e., GOA, in a multi-
objective search space were introduced in Section 3. In
Section 4, the proposed algorithm MOGOA was intro-
duced. Experimental results and discussions are presented in
Section 5. Concluding remarks and future work are provided
in Section 6.

2 Related work

The main goal of multi-objective optimization algorithms
is to search for an accurate approximation of the exact or
true Pareto optimal solutions. This problem was solved by
aggregating the objectives into a single objective by using
weight factors as follows, F = ∑N

i=1 wnfn, where N indi-
cates the number of objective functions, wn is the weighting

factors, and fn represent the objective functions [28, 29]. In
single-objective problems, the problem has one point as the
global optimal solution; therefore, the solutions can be com-
pared easily [30]. However, finding a set of solutions can be
solved by using a wide variety of weight factors which is
extremely time-consuming [31]. Moreover, the distribution
of the weights does not guarantee finding Pareto optimal
solutions [32].

There are some studies that tried to improve this method.
For example, two dynamic weighted aggregations were used
to adjust the weights over time [33]. However, the main
problems were not completely solved using this method.
Moreover, it needs to run for several times to approxi-
mate the whole Pareto solutions. Deb reported that the
metaheuristics were used with the multi-objective optimiza-
tion problem to overcome some difficulties such as local
fronts, infeasible area, isolation of optimum, and diversity
of solutions [34].

Recently, multi-objective optimization algorithms were
used to approximate the whole Pareto optimal front in a sin-
gle run. These algorithms address the conflicting objectives
and allow the exploration of the behavior of problems across
the operating conditions and a range of design parameters.
Most of the well-known meta-heuristic optimization such as
Genetic Algorithm (GA) [34] and Particle Swarm Optimiza-
tion (PSO) [12] were used for solving the multi-objective
problems.

A modified version of the GA was called Non-dominated
Sorting GA (NSGA-II) and it was used for solving multi-
objective problems [35]. This algorithm was proposed to
solve the problems of the first version NSGA-I [18] such
as the high computational cost of non-dominated sorting
and lack of considering elitism. In NSGA-II, the solutions
are grouped based on the non-dominating sorting method
and the fitness for the individuals are defined based on
its non-domination level. MOPSO was proposed by Coello
et al. [12]. The MOPSO is inspired from PSO [36] and
it starts by placing all particles randomly in the problem
space. These particles’ positions were updated using their
own non-dominated solutions, i.e., previous best positions,
and the non-dominated solution the swarm has obtained so
far, i.e., global best position. The MOPSO is terminated by
satisfying of a stopping criterion. MOPSO has a fast conver-
gence speed which makes it prone to parameter termination
without finding the Pareto optimal front [37]. In MOPSO,
an external archive was utilized for storing and retrieving the
obtained Pareto optimal solutions. This external archive was
also introduced in [38] to design the adaptive grid in Pareto
Archived Evolution Strategy (PAES). In PAES, the archive
controller component was used for deciding if a solution
should be added to the archive or not. In other words,
if a new solution is not dominated by the archive mem-
bers, it should be added as a new member to the archive.
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Moreover, in PAES, the grid component is responsible for
making the archive solutions diversified.

Recently, many multi-objective optimization algorithms
have been proposed. For example, the Multi-Objective
Cat Swarm Optimization (MOCSO) algorithm was pro-
posed in [39] and the results were compared with MOPSO
and NSGA-II. Shi Xiangui and Kong Dekui introduced
the Multi-Objective Ant Colony Optimization (MOACO)
algorithm [40]. Multi-objective Artificial Bee Colony
(MOABC) algorithm was proposed in [41], and the pro-
posed algorithm was used for feature selection using fuzzy
mutual information. In another research, Multi-objective
Gravitational Search Algorithm (MOGSA) was introduced
and it outperformed the NSGA-II and MOACO algo-
rithms [42]. Multi Objective Differential Evolution algo-
rithm was proposed and it was compared with NSGA-II and
PAES algorithms [43]. In addition, Multi-Objective Cuckoo
Search Optimization (MOCSO) was proposed in [44]
and Multi-Objective Gray-Wolf Optimization (MOGWO)
was introduced in [45]. Further, Multi-objective Teach-
ing Learning-Based Optimization (MOTLO) algorithm was
applied for scheduling in turning processes for minimiz-
ing makespan and carbon footprint [46]. The recent studies
show the ability of the metaheuristic optimization algo-
rithms in handling multi-objective problems. However, all
mentioned algorithms are not able to solve all optimization
problems according to the NFL theorem. Hence, it is very
likely that a new optimization algorithm solves a problem
that cannot be solved by one of the existing techniques in
the literature. In the next section, a novel multi-objective
version of GOA is introduced as an alternative to the cur-
rent optimization algorithms in the literature for solving
multi-objective optimization problems.

3 Preliminaries

3.1 Multi-objective optimization

In Multi-objective Optimization Problem (MOP), the prob-
lem has two or more objective functions and it can be
formulated as follows:

Minimize F(x) = [f1(x), f2(x), . . . , fm(x)]T ,

Subject to : gi(x) ≥ 0, i = 1, 2, . . . , n,

hi(x) = 0, i = 1, 2, . . . , o,

Li ≤ xi ≤ Ui, i = 1, 2, . . . , p, (1)

where x = [x1, x2, . . . , xd ] represents a vector of design
variables, d represents the number of variables, m is the
number of objective functions, gi represents the ith inequal-
ity constraint, n is the number of inequality constraints,
hi(x) is the ith equality constraint, o is the number of

equality constraints, and [Li, Ui] are the boundaries for the
variable xi . In MOP, the problem can be solved by stor-
ing a set of best solutions in an external archive (A). This
archive stores a historical record that is created for the
non-dominated solutions found along the search phases. In
the initialization phase, the archive is initialized and it is
updated iteratively, and the best solutions are defined as
non-dominated solutions or Pareto optimal solutions [47]. In
multi-objective problems, the solutions cannot be compared
using relational operators. This is due to multi-criterion
comparison metrics. In this case, a solution can be consid-
ered as a non-dominated solution if it satisfies the following
conditions:

1. Pareto dominance: Given two vectors W =
(w1, w2, . . . , wn) and V = (v1, v2, . . . , vn). W domi-
nates V if and only if W is partially less than V in the
objective space as follows:
{

fi(W) ≤ fi(V ) ∀ i , i = 1, 2, . . . , m,

fi(W) < fi(V ) ∃ i,
(2)

where m represents the number of objective functions
[48].

2. Pareto optimal solution: vector W represents a Pareto
optimal solution if and only if any other obtained
solutions cannot dominate W .

A set of Pareto optimal solutions is called a Pareto
(Optimal Front) PFOptimal and it consists of a set of non-
dominated solutions. The goal for any optimization algo-
rithm is finding the most accurate approximation of true
Pareto optimal solutions, i.e., convergence, with uniform
distributions across all objectives [49].

Figure 1 shows an overview of non-dominated solutions
in MOP. As shown, the problem is multi-objective and it has
two objective functions, i.e. the space is two-dimensional,
and the goal is to find a solution that minimizes the objec-
tive functions. In the figure, the values for f1 and f2 of the C
solution are higher than the A and B solutions. Hence, C is
dominated by A and B. On the other hand, the A and B solu-
tions are considered as non-dominated solutions because
neither of them dominates the other.

3.1.1 Performance metric parameters

For fair comparisons among different types of multi-
objective evolutionary algorithms, in this study, three well-
known assessment measures are used to evaluate the per-
formance of metaheuristic algorithms. The details of each
measure are explained below.

Metric of spacing The goal of this metric is to show the
distribution of non-dominated solutions which are obtained
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Fig. 1 Illustrative example of the optimal Pareto solution in two-
dimensional space, i.e., two objective functions. The solution C is
dominated by the A and B solutions

by a specific algorithm [34]. This metric is defined as
follows:

S =
√
√
√
√ 1

npf − 1

npf∑

i=1

(di − d̂)2 (3)

where S is the metric of spacing, di represents the Euclidean
distance between the ith member in PFg and nearest mem-
ber in PFg , PFg is the generated Pareto front (see Fig. 2),
and d̂ is the average of all distances. The Euclidean distance
is defined in (4). A small value of S gives the best uniform
distribution in PFg , and the value of S will be zero when
di = d̂, i.e., all non-dominated solutions are uniformly
distributed.

d(a, b) = d(b, a) =
√
√
√
√

n∑

i=1

(fia − fib)2 (4)

where a = (f1a, f2a, f3a, . . . , fna) and b =
(f1b, f2b, f3b, . . . , fnb) represents two points on the PFg .

Metric of spread The spread metric (�) was proposed by
Deb, and it determines the extent of spread attained by the
non-dominated solutions which are obtained from a spec-
ified algorithm [34]. Hence, this metric can analyze how
the obtained solution is extended across the Pareto optimal
fronts, and it is defined as follows:

� = df + dl + ∑npf

i=1 |di − d̂|
df + dl + (npf − 1)d̂

(5)

Fig. 2 Illustration of the metric of spacing for MOPs

where df and dl represent the Euclidean distances between
the extreme solutions in PFOptimal and PFg , respec-
tively, as shown in Fig. 3, di indicates the Euclidean dis-
tance between each point in PFg and the closest point in
PFOptimal , npf is the total number of members in PFg ,
and d̂ is the average of all distances. As indicated in (5),
the value of � is always greater than or equal to zero, and
a small value of � indicates better spread of the obtained
solution; � = 0 is the best solution indicating that extreme
solutions of PFOptimal have been found and di = d̂ for all
non-dominated points.

Generational distance metric The generational distance
(GD) metric was first introduced by Veldhuizen and Lam-
ont, and the goal of this metric is to show the capability
of different problems which are used for finding a set of
non-dominated solutions having the lowest distance with the
PFOptimal [50]. Therefore, the algorithm with the minimum
GD results has the best convergence to PFOptimal [51]. The
definition of GD is as follows:

GD = 1

npf

√
√
√
√

npf∑

i=1

d2
i (6)

where npf represents the number of members in the gener-
ated Pareto front or the obtained Pareto front PFg and di is
the Euclidean distance between ith member in PFg and the
nearest member in PFOptimal .

Figure 4 displays an illustration of the GD metric in two-
dimensional space. In GD metric, the best obtained value is
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Fig. 3 Illustration of the spread metric (�) for MOPs

equal to zero which corresponds to PFg exactly covers the
PFOptimal [52].

3.2 Grasshopper optimization algorithm (GOA)

Grasshopper Optimization Algorithm (GOA) is a new
nature-inspired algorithm that was proposed by Mirjalili et
al. [27]. This algorithm as many optimization algorithms has
two phases: exploration and exploitation. In the exploration

Fig. 4 Illustration of the GD metric for MOPs

phase, the search agents are encouraged to move for search-
ing or exploring different regions in the search space. While
in the exploitation phase, the agents move locally to enhance
the current solutions. These two phases can be implemented
using GOA.

Mathematically, the GOA simulates the swarming behav-
ior as follows:

Xi = Si + Gi + Ai (7)

where Xi is the position for the ith grasshopper, Si is the
social interaction for the ith grasshopper, Gi represents the
gravity force for the ith grasshopper, and Ai represents the
wind advection for the ith grasshopper. The random behav-
ior of the GOA can be written as follows, Xi = r1Si +
r2Gi + r3Ai , where r1, r2, and r3 are random numbers in [0,
1].

The social interaction is given by:

Si =
N∑

j = 1
j �= i

s(dij )d̂ij (8)

where N is the total number of grasshoppers, dij refers to
the distance between the ith and the j th grasshoppers as fol-
lows, dij = |xj −xi |, s is a function that defines the strength
of social forces and it is defined as in (9), and d̂ij represents
a unit vector from the ith grasshopper to the j th grasshopper
as follows, d̂ij = xj −xi

dij
.

s(r) = f e
−r
l − e−r (9)

where f is the intensity of attraction and l represents
the attractive length scale. GOA has three different zones,
namely, comfort, attraction, and repulsion zones; and the
values of f and l change the comfort zone or comfortable
distance which results in different social behaviors in arti-
ficial grasshoppers (see Fig. 5). It is worth mentioning that
the attraction or repulsion regions are very small for some
values, e.g., l = 1.0 and f = 1.0. In this study, we have
chosen l = 1.5 and f = 0.5 as in the original paper of GOA
[27]. Moreover, the function s divides the space between
two grasshoppers into attraction region, comfort zone, and
repulsion region.

The Gi component in (7) is defined as follows:

Gi = −gêg (10)

where g indicates the gravitational constant and êg is a unit
vector toward the center of earth.

The third component in (7), i.e., Ai , is defined as follows:

Ai = uêw (11)

where u is a constant drift and êw represents a unit vector in
the direction of wind.
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Fig. 5 Behavior of the function
s with different values of l and f
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Substituting the S, G, and A components in (7) as
follows:

Xi =
N∑

j = 1
j �= i

s(
∣
∣xj − xi

∣
∣)

xj − xi

dij

− gêg + uêw (12)

As reported in [27], (12) was not used in swarm simu-
lation and optimization. This is because the grasshoppers
quickly reach the comfort zone; hence, the swarm does
not converge to the optimal solution. Therefore, (12) pre-
vents the GOA from exploring and exploiting the search
space around the current solutions. Some modifications
were added to (12) to solve this problem as follows [27]:

Xd
i = c

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

N∑

j = 1
j �= i

c
ubd − lbd

2
s(|xd

j − xd
i |)xj − xi

dij

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ T̂d

(13)

where ubd and lbd represent the upper and lower bounds,
respectively, in the dth dimension, T̂d indicates the target
value in the dth dimension and it also represents the best
solution found, c represents a decreasing coefficient and
this parameter is used to shrink the attraction zone, comfort
zone, and repulsion zone. In (13), S is similar to S compo-
nent in (12) but the G and A components are not found and
the wind direction is always toward the target T̂d .

The parameter c has been used twice in (13) for the
following reasons:

• The first c from the left is similar to inertia weight w in
PSO [36], loudness in Bat algorithm [53], or �a in Grey
Wolf Optimization [54]. The goal of c is to reduce the

movements of the grasshoppers around the target. Thus,
it balances between exploration and exploitation of the
GOA. The value of c is given by:

c = cmax − t
cmax − cmin

tmax

(14)

where cmax is the maximum value of c, cmin repre-
sents the minimum value of c, t is the current iteration,
and tmax is the maximum number of iterations. In this
study, the values of cmin and cmax were 0.00001 and 1,
respectively. Hence, c → cmin, where t → ∞ .

• The goal of the second c is to decrease the comfort zone,
repulsion zone, and attraction zone between grasshop-
pers. Hence, using this term (c), the repulsion/attraction
forces between different grasshoppers decrease propor-
tionally with the number of iterations.

Generally, in GOA, the search agents moved based on
their current positions, global best, and the position of all
other search agents. While in one of the well-known opti-
mization algorithms PSO, the positions are updated based
on the current position, personal best, and global best.
Hence, in PSO, none of the other particles contribute to
modifying the position of a particle; on the other hand, in
GOA, all search agents are required to get involved in find-
ing next position of each search agent. In other words, GOA
increases the social capabilities of its agents which reflects
how the GOA is more social than PSO, and this will help
the GOA to escape from local minima traps.

4 Multi-objective grasshopper optimization
algorithm (MOGOA)

Our proposed multi-objective optimization algorithm has
two main goals. First, an accurate approximation for the
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true Pareto optimal solutions should be obtained. Second,
the obtained solution should be well-distributed across all
objectives.

Comparing different solutions in multi-objective algo-
rithms cannot be achieved using regular relational operators,
instead, a Pareto optimal dominance is utilized. The best
Pareto optimal solutions are saved in an external archive.
The main difference between the MOGOA and GOA is
the process of updating the target which guides the search
agents toward promising regions of the problem space. This
target can be easily chosen in a single-objective problems by
selecting the best solution. In MOGOA, the Pareto optimal
solutions are added to the archive and the target is chosen
from these solutions to improve the distribution of the cur-
rent solutions in the archive. This can be achieved through
calculating the distance between each solution and a number
of neighboring solutions. Next, the number of neighboring
solutions is counted and it is used to measure the crowded-
ness of regions in the Pareto optimal front. Equation (15)
defines the probability of choosing the target (Pi) from the
current solutions in the archive.

Pi = 1

Ni

, (15)

where Ni represents the number of solutions in the neigh-
borhood of the ith solution. Based on Pi , a roulette wheel is
used to select the target from the archive. This improves the
distribution of less distributed regions of the search space.

The archive has a limitation, i.e., maximum number of
solutions, that can be stored in the archive. Increasing the
size of the archive increases the computational cost. On the
other hand, decreasing the size of the archive may lead to the
issue of a full archive. Hence, to solve this problem, solu-
tions in a crowded neighborhood are removed. This will give
a chance for a new solution to be stored in less populated
regions.

The content of the archive should be updated regularly.
This can be achieved by comparing the solution in the
archive with a new external solution. In MOGOA, there are
two cases:

• when the external solution is dominated by at least one
of the archive solutions, the external solution should be
thrown away.

• when the external solution is non-dominated with
respect to all solutions inside the archive. Thus, a non-
dominated solution, i.e., external solution, should be
added to the archive. However, if the external solution
dominates a solution inside the archive, it should be
replaced with it.

Generally, the MOGOA is capable of finding the Pareto
optimal solutions, save them in the archive, and their

distribution are improved. The steps of the proposed
MOGOA algorithm are summarized in Algorithm 1.

It is worth mentioning that the computational complexity
of the MOGOA algorithm is O(MN2), where M and N rep-
resent the number of objectives and the number of solutions,
respectively, while the computational complexity of NSGA
[19] and SPEA [20] algorithms are O(MN3). This reflects
how the proposed MOGOA is faster for finding the optimal
or near optimal solutions than some of the state-of-the-art
algorithms.

5 Experimental results and discussion

In this section, we describe the results we obtained from
a set of experiments for evaluating the proposed MOGOA
algorithm. The aim of the first set of experiments is to
test our algorithm using unconstrained testing functions
(see Section 5.2). In the second set of experiments, the
aim was to evaluate our algorithm using constrained func-
tions (see Section 5.3). In all experiments, to see how
the proposed algorithm performs in comparison with other
algorithms, the results of MOGOA algorithm were com-
pared with MOPSO [49], NSGA-II [49], and MOALO [55]
algorithms.
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5.1 Experimental setup

In order to get an unbiased comparison of CPU times, all
the experiments are performed using the same PC with the
detailed settings as shown in Table 1.

In this section, 12 test problems were selected to eval-
uate the performance of the proposed MOGOA algorithm.
The benchmark functions were divided into two groups,
namely, Constrained and Unconstrained. Each group has
six testing functions. In both experiments, the testing func-
tions with diverse characteristics and especially different
Pareto optimal Front (PF) were chosen to test the perfor-
mance of MOGOA from different perspectives. The details
of the unconstrained functions are listed in Table 2, while
the details of the constrained testing functions are summa-
rized in Section 5.3. For each algorithm, the optimization
task was run 10 times for all benchmark problems, and
the obtained results are illustrated in the form of average
± standard deviation. Moreover, the maximum number of
iterations was 100 and the search of agents was 100.

Different assessment methods have been used to eval-
uate the performance of the proposed algorithm such as:
(1) metric of spacing [56], (2) metric of spread [57], and
(3) generational distance (GD) [50]. Moreover, for compari-
son between multiple algorithms and multiple test functions,
the average ranks were used. For each given testing func-
tion, the algorithms are sorted from best to worst, and the
best algorithm receives rank 1, the second best algorithm
receives rank 2, and so on. The average ranks are assigned in
case of a tie, e.g. if two algorithms tie for the top rank, they
both receive rank 1.5. Average ranks of all testing functions
are then calculated. Moreover, we used the non-parametric
Wilcoxon signed rank test for all of the testing functions to
compare different algorithms [58].

5.2 Unconstrained test functions

The goal of this experiment is to evaluate the proposed
MOGOA algorithm and compare it with three well-known

Table 1 The detailed settings

Name Detailed settings

Hardware

CPU Core (TM) i5-2400

Frequency 3.10 GHz

RAM 4G

Hard Drive 160 GB

Software

Operating system Window 7

Language MATLAB R2012a (7.14)

Table 2 Unconstrained test functions

Test functions Functions’ details

ZDT Minimize: F(f1(x), f2(x)), where

f1(x) = x10,

f2(x) = g(x).
(

1 −
√

f1(x)
g(x)

)
,

g(x) = 1 + 9
N−1

∑N
i=2 xi,

0 ≤ xi ≤ 1, 1 ≤ i ≤ 30

ZDT2 Minimize: F(f1(x), f2(x)), where

f1(x) = x1,

f2(x) = g(x).
(

1 − (
f1(x)
g(x)

)
2)

,

g(x) = 1 + 9
N−1

∑N
i=2 xi,

0 ≤ xi ≤ 1, 1 ≤ i ≤ 30

ZDT3 Minimize: F(f1(x), f2(x)), where

f1(x) = x1,

f2(x) = g(x).
(

1 −
√

f1(x)
g(x)

− (
f1(x)
g(x)

) sin(10πf1(x))
)

,

g(x) = 1 + 9
29

∑N
i=2 xi,

0 ≤ xi ≤ 1, 1 ≤ i ≤ 30

ZDT4 Minimize: F(f1(x), f2(x)), where

f1(x) = x1,

f2(x) = g(x).
(

1 −
√

f1(x)
g(x)

)
,

g(x) = 1 + 10(n − 1) + ∑N
i=2 (x2

i − 10 cos(4πxi),

0 ≤ x1 ≤ 1, −5 ≤ xi ≤ 5, 1 ≤ i ≤ 10

ZDT6 Minimize: F(f1(x), f2(x)), where

f1(x) = 1 − exp(−4x1).sin
6(6πx1),

f2(x) = g(x).
(

1 − (
f1(x)
g(x)

)2
)

,

g(x) = 1 + [
∑n

i=2 xi

n−1 ]0.25
,

0 ≤ xi ≤ 1, 1 ≤ i ≤ 10

LZDT1 Minimize: F(f1(x), f2(x)), where

f1(x) = x1,

f2(x) = g(x).
(

1 − f1(x)
g(x)

)
,

g(x) = 1 − 9
N−1

∑N
i=2 xi,

0 ≤ xi ≤ 1, 1 ≤ i ≤ 30

algorithms MOPSO [49], NSGA-II [49], and MOALO [55].
In this experiment, six unconstrained testing functions were
used (ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, and Linear ZDT1
or simply LZDT1); these testing functions are well-known
ZDT test suite and it was used in [59]. The first five test
functions in this study are identical to those in the origi-
nal ZDT suite, another last test function is slightly different
in the same manner similar to [49]. The details of these
functions are summarized in Table 2. Figure 6 shows the
obtained Pareto optimal solutions of all algorithms using
unconstrained functions. The results of this experiment are
summarized in Tables 3, 4, and 5.

Tables 3, 4, and 5 allow us to draw the following conclu-
sions:
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Fig. 6 Obtained Pareto optimal solutions by the MOGOA, MOALO, MOPSO, and NSGA-II algorithms with unconstrained functions

• In terms of the metric of spacing, the MOGOA achieved
results better than all the other algorithms in most cases.
As shown in Table 3, the MOGOA achieved the best
results with all testing functions and it achieved the sec-
ond best results with ZDT3. In addition, the MOALO
and MOPSO obtained the second and third best solu-
tions, respectively. Moreover, from the table, the results
with ∗ sign means that the p-value for this algorithm is
larger than the predicted statistical significance level of

Table 3 Statistical results of metric of spacing with unconstrained
testing functions

Testing Function MOGOA MOALO MOPSO NSGA-II

ZDT1 0.14±0.03 0.17±0.04 0.26±0.15 0.45±0.21

ZDT2 0.17±0.03 0.23±0.09 0.31±0.11 0.56±0.20

ZDT3 0.21±0.11 0.24±0.14 0.20±0.13∗ 0.34±0.15

ZDT4 0.51±0.32 0.53±0.38∗ 0.62±0.34 0.60±0.32

ZDT6 0.25±0.19 0.34±0.13 0.46±0.23 0.57±0.23

LZDT1 0.09±0.04 0.12±0.06 0.19±0.11 0.31±0.19

0.005. As shown, the p-value for ZDT3 with MOPSO
algorithm and ZDT4 with MOALO algorithm were
greater than the predicted statistical significance level
of 0.005, but the other p-values are smaller than the
significance level of 0.005. Further, Fig. 7 shows the
average ranks for all algorithms and as shown, the
MOGOA achieved the lowest, i.e., best, rank.

• In terms of metric of spread results, as shown in
Table 4, the MOGOA achieved the best results with

Table 4 Statistical results of metric of spread with unconstrained
testing functions

Testing Function MOGOA MOALO MOPSO NSGA-II

ZDT1 0.15±0.09 0.23±0.12 0.34±0.16 1.1±0.54

ZDT2 0.31±0.15 0.26±0.13∗ 0.42±0.16 0.85±0.41

ZDT3 0.30±0.21 0.34±0.16 0.36±0.20 0.89±0.35

ZDT4 0.51±0.25 0.67±0.37 0.61±0.23 0.94±0.36

ZDT6 0.49±0.21 0.82±0.34 0.67±0.25 1.2±0.46

LZDT1 0.16±0.03 0.31±0.11 0.42±0.16 0.68±0.31
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Table 5 Statistical results of generation distance metric with uncon-
strained testing functions

Testing Function MOGOA MOALO MOPSO NSGA-II

ZDT1 0.04±0.01 0.06±0.02 0.09±0.05 0.21±0.13

ZDT2 0.06±0.02 0.09±0.04 0.16±0.08 0.23±0.12

ZDT3 0.09±0.03 0.08±0.03∗ 0.09±0.04∗ 0.31±0.09

ZDT4 0.34±0.13 0.32±0.11∗ 0.42±0.17 0.37±0.16

ZDT6 0.19±0.06 0.21±0.05 0.25±0.12 0.32±0.19

LZDT1 0.03±0.01 0.05±0.02 0.13±0.06 0.23±0.11

all testing functions except with ZDT2 the MOGOA
obtained the second best results. Moreover, the MALO
obtained the second best results and NSGA-II obtained
the worst results. These results are in agreement with
Fig. 7. As shown, the MOGOA algorithm obtained the
best rank. Additionally, from the table, the p-value for
ZDT2 with MOALO algorithm was greater than the
predicted statistical significance level of 0.005, but the
other p-values are smaller than the significance level of
0.005.

• In terms of GD results, as shown in Table 5, the
MOGOA algorithm outperformed the other three algo-
rithms in most cases. As shown, with the ZDT3 and
ZDT4 testing functions the MOGOA obtained the sec-
ond best results and obtained the best results with
the other testing functions. Moreover, the MOALO
achieved the second best results and the NSGA-II
obtained the worst results. Figure 7 shows that the
MOGOA algorithm obtained results better than the
other algorithms. Further, from Table 5 the p-values for
ZDT3 (with MOALO and MOPSO) and ZDT4 (with
MOALO) testing functions were greater than the pre-
dicted statistical significance level of 0.005, but the

Fig. 7 Average ranking of the comparison between the proposed
MOGOA algorithm and the other three algorithms, i.e., MOALO,
MOPSO, and NSGA-II, with the unconstrained testing functions

other p-values are smaller than the significance level of
0.005.

Figure 6 illustrates the best PF obtained (in one run)
by MOGOA, MOALO, MOPSO, and NSGA-II algorithms
with the unconstrained functions. As shown, the NSGA-II
shows the worst convergence which is in agreement with
the obtained results. Moreover, the MOGOA, MOALO,
and MOPSO algorithms provide a very good convergence
toward all true Pareto-optimal fronts.

To conclude, compared with the MOPSO, MOALO,
and NSGA-II algorithms, the proposed MOGOA algorithm
achieved the best results and a better convergence toward all
the true Pareto optimal fronts.

5.3 Constrained test functions

The aim of this experiment is to evaluate the performance of
the proposed MOGOA algorithm when six constrained test-
ing functions were used (CONSTR, TNK, SRN, BNH, OSY,
and KITA). The results of the MOGOA were compared with
MOPSO, NSGA-II, and MOALO algorithms. The details
of these functions are summarized in this section. Figure 8
shows the obtained Pareto optimal solutions for all opti-
mization algorithms with all constrained functions. The
results of this experiment are summarized in Tables 6, 7,
and 8.

The details of the constrained testing functions that were
used in our experiments are as follows:

1. CONSTR: This function represents a mathematical
problem and it has two design variables [34]. The
Pareto optimal front for this function is convex and the
function is defined as follows:

Minimize F (f1(x), f2(x)), where

f1(x) = x1,

f2(x) = (1 + x2)

(x1)
, (16)

Subject to:

g1(x) = 6 − (x2 + 9x1) ≤ 0,

g2(x) = 1 + x2 − 9x1 ≤ 0,

0.1 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 5 (17)

2. TNK: This function has two design variables and it
is defined as in (18). This function has some convex
regions and it has discontinuous Pareto optimal front
which lies on the boundary of the first constraint [60].

Minimize : F(f1(x), f2(x)), where

f1(x) = x1,

f2(x) = x2, (18)
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Fig. 8 Obtained Pareto optimal solutions by the MOGOA, MOALO, MOPSO, and NSGA-II algorithms with constrained functions

Subject to:

g1(x)=−x2
1 − x2

2 +1+0.1Cos(16arctan(
x1

x2
)) ≤ 0,

g2(x)=0.5− (x1− 0.5)2− (x2− 0.5)2 ≤ 0,

0.1≤ x1 ≤ π, 0≤ x2 ≤ π (19)

3. SRN: This function is introduced by Srinivas and Deb
in [57]. It has two design variables with a continuous

Pareto optimal front. It is given by:

Minimize : F(f1(x), f2(x)), where

f1(x) = 2 + (x1 − 2)2 + (x2 − 1)2,

f2(x) = 9x1 − (x2 − 1)2, (20)

Subject to:

g1(x) = x2
1 + x2

2 − 255 ≤ 0,

g2(x) = x1 − 3x2 + 10 ≤ 0,

−20 ≤ x1 ≤ 20,−20 ≤ x2 ≤ 20 (21)

Table 6 Statistical results of
metric of spacing with
constrained testing functions

Testing Function MOGOA MOALO MOPSO NSGA-II

CONSTR 2.29e−2 ± 2.0e−3 2.14e-2±2.7e−3∗ 3.25e-2±2.4e−3 4.37e−2 ± 4.1e−3

TNK 1.6e−2 ± 1.2e−3 0.2e−2 ± 0.1e−3∗ 2.17e-2±1.9e−3 3.42e-2±2.6e−3

SRN 0.61±0.13 0.70±0.10 1.28±0.2 1.59±0.13

BNH 0.31±3.6e−2 0.34±2.4e−2 0.69±3.8e−2 0.78±7.2e−2

OSY 0.39±6.3e−2 0.49±7.6e−2 0.52±9.5e−2 1.14±2.8e−2

KITA 0.26±0.39 0.29±0.42∗ 0.32±0.48∗ 0.44±0.15
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Table 7 Statistical results of
metric of spread with
constrained testing functions

Testing Function MOGOA MOALO MOPSO NSGA-II

CONSTR 0.29±2.0e−2 3.46±1.0e−2 0.94±3.7e−1 0.55±2.7e−2

TNK 0.63±3.3e−2 0.64±1.2e−2 0.79±5.1e−2 0.82±2.9e−4

SRN 0.53±5.1e−2 0.39±2.5e−2∗ 0.67±7.2e−2 0.39±2.5e−2

BNH 0.36±1.1e−2 0.37±2.6e−2∗ 0.48±2.7e−2 0.53±2.4e−2

OSY 0.34±2.7e−2 0.39±2.6e−2 0.49±1.9e−2 0.62±2.8e−2

KITA 0.52±0.15 0.60±0.19 0.99±0.12 0.79±0.20

4. BNH: This function was first introduced by Binh and
Korn in [61], and it is defined as follow:

Minimize : F(f1(x), f2(x)), where

f1(x) = 4x2
1 + 4x2

2 ,

f2(x) = (x1 − 5)2 + (x2 − 5)2, (22)

Subject to:

g1(x) = (x1 − 5)2 + x2
2 − 25 ≤ 0,

g2(x) = 7.7 − (x1 − 8)2 − (x2 + 3)2 ≤ 0,

0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 3 (23)

5. OSY: The OSY function has five separated regions and
it was proposed by Osyczka and Kundu [62]. More-
over, it has six constraints and six design variables. The
definition of this variable is as follows:

Minimize : F(f1(x), f2(x)), where

f1(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 ,

f2(x) = [25(x1 − 2)2 + (x2 − 1)2 + (x3 − 1)

+(x4 − 4)2 + (x5 − 1)2], (24)

Subject to:

g1(x) = 2 − x1 − x2 ≤ 0,

g2(x) = −6 + x1 + x2 ≤ 0,

g3(x) = −2 − x1 + x2 ≤ 0,

g4(x) = −2 + x1 − 3x2 ≤ 0,

g5(x) = −4 + x4 + (x3 − 3)2 ≤ 0,

g6(x) = 4 − x6 − (x5 − 3)2 ≤ 0,

0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10, 1 ≤ x3 ≤ 5,

0 ≤ x4 ≤ 6, 1 ≤ x5 ≤ 5, 0 ≤ x6 ≤ 10 (25)

6. KITA: This function was introduced by Kita et al. [63],
and it has been widely used. The mathematical formula
for this function is as follows:

Maximize : F(f1(x), f2(x)), where

f1(x) = −x2
1 + x2,

f2(x) = 1

2
x1 + x2 + 1, (26)

Subject to:

g1(x) = 1

6
x1 + x2 − 13

2
≤ 0

g2(x) = 1

2
x1 + x2 − 15

2
≤ 0

g3(x) = 5x1 + x2 − 30 ≤ 0

0 ≤ x1, x2 ≤ 7 (27)

From Tables 6, 7, and 8, the following notes can be
remarked:

• In terms of the metric of spacing, the MOGOA obtained
results better than all the other algorithms in most cases.
As shown in Table 6, the MOGOA achieved the best
results with all testing functions and it achieved the
second best results with the CONSTR and TNK func-
tions. Additionally, the MOALO and MOPSO obtained
the second and third best solutions, respectively. More-
over, from the table, the results with ∗ sign means that
the p-value for this algorithm is larger than the pre-
dicted statistical significance level of 0.005 (as in the
first experiment). As shown, the p-value for CONSTR,
TNK, and KITA with MOALO algorithm were greater

Table 8 Statistical results of
generation distance metric with
constrained testing functions

Testing Function MOGOA MOALO MOPSO NSGA-II

CONSTR 1.37e−3 ± 3.6e−5 1.7e−4 ± 4.6e−5 4.54e−3 ± 6.89e−4 5.14e−3 ± 2.5e−4

TNK 4.86e−4 ± 3.6e−5 7.97e−4 ± 5.4e−5 5.09e−3 ± 4.6e−4 4.05e−3 ± 4.4e−4

SRN 4.36e−5 ± 2.1e−4 6.89e−5 ± 3.5e−6 2.76e−3 ± 2.1e−4 3.71e−3 ± 5.1e−4

BNH 2.05e−4 ± 5.7e−5 3.15e−3 ± 3.5e−5 4.62e−3 ± 2.9e−5 4.91e−3 ± 2.8e−5

OSY 3.10e−2 ± 2.6e−2 3.27e−2 ± 2.5e−2 9.68e−2 ± 7.2e−2 9.89e−1 ± 9.78e−1

KITA 3.91e−2 ± 4.7e−2 4.20e−2 ± 4.9e−2 4.67e−2 ± 5.4e−2 4.00e−2 ± 4.4e−2
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than the predicted statistical significance level of 0.005,
but the other p-values are smaller than the significance
level of 0.005. Further, Fig. 9 shows the average ranks
for all algorithms and as shown the MOGOA achieved
the lowest, i.e., best, rank, and the NSGA-II algorithm
was the worst one.

• In terms of metric of spread results, as shown in
Table 7, the MOGOA obtained the best results with
all testing functions except with SNR function the
MOGOA obtained the second best results. Moreover,
the MOALO obtained the second best results in most
cases and the NSGA-II algorithm obtained the worst
results. These results are in agreement with Fig. 9. As
shown, the MOGOA algorithm obtained the best rank
and the NSGA-II attained the highest, i.e., worst, rank.
Additionally, from the table, the p-value for SRN and
BNH testing functions with MOALO algorithm was
greater than the predicted statistical significance level
of 0.005, but the other p-values are smaller than the
significance level of 0.005.

• In terms of GD results, as shown in Table 8, the
MOGOA algorithm outperformed the other three algo-
rithms in all cases, and the MOALO achieved the
second best results, while the MOPSO and NSGA-II
algorithms obtained the worst results. Figure 9 displays
that the MOGOA algorithm obtained results better than
the other algorithms. Further, from Table 8 the p-values
for SNR and BNH testing functions with MOALO
algorithm were greater than the predicted statistical sig-
nificance level of 0.005, but the other p-values are
smaller than the significance level of 0.005.

Figure 8 displays the PF obtained (in one run) by
MOGOA, MOALO, MOPSO, and NSGA-II algorithms
with the constrained functions. As shown, the constrained
test functions have very different Pareto fronts compared

Fig. 9 Average ranking of the comparison between the proposed
MOGOA algorithm and the other three algorithms, i.e., MOALO,
MOPSO, and NSGA-II, with the constrained testing functions

with the unconstrained test functions, such as CONSTR,
BNH, and OSY. CONSTR function has a concave front
attached to a linear front. As shown, the MOGOA and
MOALO managed to approximate the CONSTR function
successfully. The OSY function is slightly similar to CON-
STR function but with multiple linear regions with different
slopes. Moreover, the TNK function has a wave-shaped
front. As shown in Fig. 8, the MOGOA and MOALO algo-
rithms provide a very good convergence toward most of the
true Pareto-optimal fronts.

Generally, the proposed MOGOA algorithm obtained
the best results and a competitive convergence toward all
the true Pareto optimal fronts compared with the MOPSO,
MOALO, and NSGA-II algorithms.

6 Conclusions

This paper proposed a multi-objective version of the
recently proposed Grasshopper optimization algorithm
(GOA) called MOGOA. The proposed algorithm was
designed by integrating the GOA with an external archive
and grasshopper selection mechanism based on Pareto opti-
mal dominance. The goal of the external archive is to keep
non-dominated solutions. The proposed MOGOA utilized
the same features of the GOA. The MOGOA was veri-
fied by 12 testing functions including six unconstrained
functions and six constrained functions. In our experi-
ments, three assessment methods were used: generational
distance metric, metric of spacing, and metric of spread.
The findings of our experiments proved that the proposed
MOGOA was able to find the optimal Pareto front (PF)
and provide a superior quality of solutions in comparison
with a variety of other algorithms such as Multi-Objective
Particle Swarm Optimization (MOPSO), Multi-Objective
Ant Lion Optimizer (MOALO), and Non-dominated Sort-
ing Genetic Algorithm version 2 (NSGA-II). In general,
according to the reported results, the MOGOA offers com-
petitive solutions compared with the other multi-objective
algorithms and it offers a wider range of non-dominated
solutions.

For future studies, we are planning to employ the
MOGOA algorithm in machine learning-related applica-
tions. In this area, some applications have many problems
with different objectives such as feature selection, parameter
optimization, i.e., parameter tuning, and data preprocessing.
Our next goal is to employ the MOGOA in such prob-
lems. Moreover, different modifications will be added to
the MOGOA such as using Chaotic maps, this is called
Chaotic optimization, for generating values for c parame-
ter. This modification can help the MOGOA to converge to
the optimal solution faster than standard stochastic search
as reported in [64].
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