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ABSTRACT
The whale optimization algorithm (WOA) is an intelligence-based tech-
nique that simulates the hunting behaviour of humpback whales in nature.
In this article, an adaptation of the original version of the WOA is made
for handling binary optimization problems. For this purpose, two trans-
fer functions (S-shaped and V-shaped) are presented to map a continuous
search space to abinary one. To illustrate the functionality andperformance
of the proposed binary whale optimization algorithm (bWOA), its results
when applied on twenty-twobenchmark functions, three engineering opti-
mization problems and a real-world travelling salesmanproblemare found.
Furthermore, the proposed bWOA is comparedwith five well-knownmeta-
heuristic algorithms. The experimental results show its superiority in com-
parison with other state-of-the-art metaheuristics in terms of accuracy and
speed. Finally, Wilcoxon’s rank-sumnon-parametric statistical test is carried
out at the 5% significance level to judge whether the results of the pro-
posed algorithm differ from those of the other comparison algorithms in
a statistically significant way.
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1. Introduction

Several optimization problems dealing with discrete binary search space have been applied in a
wide variety of domains such as feature selection (Emary and Zawbaa 2018), dimensionality reduc-
tion (Zawbaa et al. 2018), chemical activity (Hussien, Hassanien, and Houssein 2017), wind turbine
placement (Beşkirli et al. 2018), mass transit services, unit commitment (Yuan et al. 2014) and
resource allocation (Fan, You, and Li 2013). Recently, various metaheuristic algorithms have been
proposed to solve complicated computational problems (Hassanien and Emary 2016; Tharwat et
al. 2017) such as particle swarmoptimization (PSO) (Kennedy andEberhart 1995), genetic algorithms
(GAs) (Holland 1975), bat algorithms (BAs) (Yang 2010b), grasshopper optimization algorithms
(GOAs) (Saremi, Mirjalili, and Lewis 2017) and the ant lion optimizer (ALO) (Mirjalili 2015). More-
over, the flexibility of these algorithms to deal with different problems compared with conventional
optimization techniques makes these algorithms popular among researchers.

Classical mathematical techniques and methods always fail in solving complex optimization
problems in a reasonable time. However, metaheuristic algorithms are able to solve NP-problems
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owing to their simplicity, ease of implementation and ability to avoid local optima (Saka, Hasançebi,
and Geem 2016). Strictly speaking, metaheuristic optimization algorithms are classified into three
groups: physics-based (Geem, Kim, and Loganathan 2001), evolution-based (Gong et al. 2014) and
swarm-intelligence-based (Krause et al. 2013).

Most metaheuristic algorithms were designed to handle continuous problems (Mirjalili 2015;
Saremi, Mirjalili, and Lewis 2017). For this reason, the need for binary algorithms became an urgent
task for their solution. Many research efforts have been made in order to adapt algorithms for solv-
ing binary optimization problems. Therefore, various optimization problems with a binary domain
such as feature selection (Pal and Maiti 2010) and multi-class support vector machines (Babaoglu,
Findik, and Ülker 2010; Lee and Lee 2015) still need more study and are regarded as hot topics. Most
metaheuristic algorithms, such as the dragonfly algorithm (Mirjalili 2016), the gravitational search
algorithm (GSA) (Rashedi, Nezamabadi-Pour, and Saryazdi 2009), and the magnetic optimization
algorithm (MOA) (Tayarani-N and Akbarzadeh-T 2008), have binary versions that enable them to
solve binary optimization problems.

In recent years, several binary metaheuristic algorithms have been developed to tackle continuous
problems while conserving the concepts of the search process. For instance, Emary, Zawbaa, and
Hassanien (2016a, 2016b) have proposed binary ant lion and binary greywolf optimization for feature
selection. To solve optimization problems, various metaheuristic algorithms have been proposed by
for instance Obagbuwa and Abidoye (2016), who presented binary cockroach swarm optimization
for combinatorial optimization problems. Dahi, Mezioud, and Draa (2016) proposed a binary flower
pollination algorithm and Beheshti, Shamsuddin, and Yuhaniz (2013) presented a binary accelerated
particle swarm algorithm for solving discrete optimization problems. Also, Mirjalili, Mirjalili, and
Yang (2014) proposed a binary bat algorithm (BBA). Further, Holland (1992) proposed a GA that
was inspired by natural evolution and has been widely used for solving combinatorial optimization
problems (COPs) (Lau et al. 2010).

The whale optimization algorithm (WOA) (Mirjalili and Lewis 2016) has gained huge interest
since its appearance in 2016. Jadhav andGomathi (2018) proposed a hybrid of the greywolf algorithm
and the whale algorithm called the WGC algorithm. Also, Mafarja and Mirjalili (2017) proposed a
hybrid whale optimization algorithm with simulated annealing and applied it to feature selection.
Wang et al. (2017) proposed a multi-objective version of theWOA and applied it to wind speed fore-
casting. El Aziz, Ewees, and Hassanien (2017) applied the WOA to multilevel thresholding image
segmentation.

Eid (2018) developed a new binary whale optimization algorithm (bWOA) to estimate the param-
eters of photovoltaic cells solving the feature selection (FS) problem. In Reddy K. et al. (2018), the
bWOA has been used for profit-based unit commitment problems in marketing.

In the same context, a binary whale optimization algorithm and an S-shaped binary whale opti-
mization algorithm have been presented by Hussien, Houssein, and Hassanien (2017) and Hussien et
al. (2019) in order to solve the feature selection problem.

Obviously, the no-free-lunch (NFL) theorem (Wolpert and Macready 1997) makes this field of
study highly active, which results in enhancing current approaches and proposing newmetaheuristics
every year. This theorem has revealed that no onemetaheuristic optimization algorithm in particular
is best suited for solving all optimization problems. Also, the superior ability of the WOA (Mirjalili
and Lewis 2016) to deal with different problems, such as engineering design problems and mathe-
matical optimization problems, makes this algorithm popular compared with conventional as well as
metaheuristic algorithms.

TheWOAwas proposed to solve the continuous search space problem—it cannot deal with binary
problems directly. For this reason, a promising way to cope with this issue is regarded as the main
motivation for this article, which proposes two binary variants of the WOA, called the bWOA-S
and the bWOA-V, for solving discrete optimization problems. In order to achieve this, the two pro-
posed algorithms will force the whales to move in binary search spaces by shifting their positions by
zero or one. Therefore, two sigmoid transfer functions are applied to obtain a new position. Even-
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tually, the statistical results prove that the proposed algorithms are very competitive compared with
three well-known metaheuristic algorithms, namely the BBA (Mirjalili, Mirjalili, and Yang 2014),
the bPSO (Kennedy and Eberhart 1997), the binary grey wolf optimization algorithms bGWO1 and
bGWO2 (Emary, Zawbaa, and Hassanien 2016b) and a GA (Holland 1992).

The article is organized as follows: a short overview of the basic whale optimization algorithm
is presented in Section 2. Section 3 discusses the proposed binary whale optimization algorithm.
Benchmark test functions used in the performance evaluation process are presented in Section 4.
Sections 5 and 6 provide experimental results and a discussion. Finally, Section 7 concludes the article
and suggests some future work.

2. Whale optimization algorithm

Mirjalili and Lewis (2016) have developed theWOA inspired by the behaviour of whales. Mathemat-
ically, in the assumption model of the WOA, the current best candidate solution is the target prey.
Other whales try to update their position to reach the best according to Equation (1):

D = |CX∗(t) − X(t)| (1)

X(t + 1) = X∗(t) − A · D, (2)

where t represents the current iteration, C and A are coefficient vectors, X∗ represents the position
vector of the best solution, andX is the position vector.A andC values are calculated by the following
equations:

A = 2 · a · r − a (3)

C = 2 · r, (4)

where a is linearly decreased from two to zero over iterations and r ∈ [0, 1]. The exploitation phase
is simulated mathematically as follows.

(1) Shrinking encircling: obtained by decreasing a values according to Equation (4). Remark that
a is a random value in [−a, a].

(2) Spiral updating: calculates the distance between the prey and the whale. Equation (5), calculates
the spiral that mimics the spiral movement as follows:

X(t + 1) = Dleb l · cos(2πl) + X∗(t) (5)

where b is fixed and l is a random number in [−1, 1]. To choose either the spiral model or the
shrinking encircling mechanism model, a probability of 50% is assumed as follows:

X(t + 1) =
{
X∗(t) − A · D if p < 0.5
Dl · eb l · cos(2πl) + X∗(t) otherwise,

(6)

where p is a random number in a uniform distribution. On the other hand, in the exploration
phase, 1 ≺ A ≺ −1 is used to force the agent to move away from this location. Equations (7)
and (8) represent the exploration phase mathematically as follows:

D = |C · Xrand − X| (7)

X(t + 1) = Xrand − A · D. (8)
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3. Binary whale optimization algorithm

In continuousWOA, eachwhale changes its position to any point using Equation (2), while in bWOA,
to update a position means you switch between either zero or one. Moreover, in the binary ver-
sion, Equation (2) becomes in this case insufficient to perform the position updating process. So
the major point is changing the agent position according to the probability of its distance (Kennedy
and Eberhart 1997). To achieve this, a transfer function is required to map the values of the distance
to probability values to update the positions. Figure 1 demonstrates the flow chart of the binaryWOA
version.

S-shaped (sigmoid) andV-shaped (hyperbolic tan) functions are used to squash solutions by Equa-
tions (9) or (10), respectively. Then, a threshold is applied in the case of S-shaped functions using
Equation (11), while using Equation (12) in the case of V-shaped functions.

Figure 2 illustrates the mathematical curve of S-shaped and V-shaped functions, and Algorithm 1
shows the pseudo-code of the binary versions.

Figure 1. Binary whale optimization algorithm diagram.
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S(xki (t)) = 1

1 + e−dki (t)
(9)

V(xki (t)) = | tanh(xki (t))|, (10)

Figure 2. S-shaped and V-shaped transfer functions. (a) V-shaped and (b) S-shaped.

Algorithm 1 Binary whale optimization algorithms (bWOA-S and bWOA-V)
1: Input: n Number of whales in the population.
2: MaxIter Number of iterations for optimization.
3: Output: Optimal whale position
4: Initialize a, the population of n whales.
5: Find X∗ = best search agent threads.
6: while stopping criteria not meet to do
7: for whalei belong to whales do
8: Calculate and Update a;A,C, pandl.
9: if p < 0.5 then
10: if (|A| < 1) then
11: Update position by Equation (2)
12: else (|A| ≥ 1)
13: Select a random search agent (Xrand)
14: Update position by Equation (8)
15: end if
16: else (p ≥ 0.5)
17: Update position by Equation (5)
18: end if
19: Squash solution using Equation (9) or Equation (10)
20: Update X(t + 1) from Equation (11) or Equation (12)
21: end for
22: Calculate the agent fitness
23: Update X∗ if there is a better solution
24: t = t + 1
25: end while
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where dki (t) is the distance of the particle

xki (t + 1) =
{
0 if r and < S(xki (t))
1 otherwise

(11)

Xk
i (t + 1) =

{
(xki (t))

−1 r and < V(xki (t))
xki (t) otherwise,

(12)

where xki (t) and xki (t + 1) illustrate the position of the ith particle at specific iterations and dimen-
sions, and xki (t)

−1 is the complement of (xki (t)).

4. Evaluation criteria and benchmark test functions

Twenty-two benchmark unconstrained functions (unimodal, multimodal and composite functions)
and three engineering problems are used to evaluate the performance of the proposed bWOA-S and
bWOA-V algorithms.

4.1. Evaluation criteria

The proposed algorithm is evaluated using three different statistical measurements as follows.

(1) Average (Ave) is the average of a stochastic optimization algorithm appliedN times as shown in
Equation (13):

Ave = 1
N

N∑
i=1

f i∗, (13)

where f i∗ is the optimal solution that resulted at the ith agent of the algorithm.
(2) Median (Med) is the middle value of the ordered data.
(3) Standard deviation (Std) if the standard deviation is too small, then it means that the optimizer

converges to the same solution. Otherwise, if it has large values, then it means that it is close to
random results, as shown in Equation (14):

Std =
√(

1
N − 1

)∑
(f i∗ − Mean)

2. (14)

4.2. Benchmark test functions

To investigate the performance of the bWOA, twenty-two standard benchmark functions with differ-
ent characteristics are selected (Mirjalili, Mirjalili, and Yang 2014) in addition to three engineering
design problems. Numerical experiments are carried out for twenty-five case studies including seven
unimodal functions, nine multimodal functions, six composite functions and three engineering
design problems.

Tables 1 and 2 demonstrate the aforementioned functions, where ‘Dim’ indicates the number of
dimensions, ‘Range’ is the boundary of the function’s search space, and fmin is the minimum value
obtained from the function.

Moreover, three optimization engineering design problems, namely tension/compression spring
design, welded beam design and pressure vessel design, are presented in Table 3.
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Table 1. Unimodal and multimodal functions.

Function Range Dim Minimum

F1 = ∑n
i=1 x

2
i [−100, 100] 30 0

F2 = ∑n
i=1 |xi| + �n

i=1|xi| [−10, 10] 5 0

F3 = ∑n
i=1(

∑i
j−1 xj)

2 [−100, 100] 5 0

F4 = maxi{|xi|, 1 ≤ i ≤ n} [−100, 100] 5 0

F5 = ∑n−1
i=1 [100(xi+1 − x2i )

2 + (xi − 1)2] [−30, 30] 5 0

F6 = ∑n
i=1([xi + 0.5])2 [−100, 100] 5 0

F7 = ∑n
i=1 ix

4
i + random[0, 1] [−1.28, 1.28] 5 0

F8 = ∑n
j=1 −Zj sin(

√|Zj|) [−500, 500] 30 −418.98×5

F9 =
∑n

i=1
[z2j − 10 cos(2πzj) + 10] [−5.12, 5.12] 30 0

F10 = −20 exp(−0.2
√

1
n

∑n
j=1 z

2
j ) − exp ( 1n

∑n
j=1 cos(2πZj)) + 20 + e [−32, 32] 30 0

F11 = 1
4000

∑n
j=1 z

2
j − ∏n

j=1 cos(zj/
√
j) + 1 [−600, 600] 30 0

F12 = π
n {10 sin(πy1) + ∑n−1

j=1 (yi − 1)
2
[1 + 10 sin2(πyj+1)] + (yn − 1)2}

+∑n
j=1 u(xj , 10, 100, 4), [−50, 50] 30 0

yj = 1 + xj + 1

4
, u(xj , a, k,m) =

⎧⎪⎨
⎪⎩
k(xj − a)m xj � a
0 −a ≺ xj ≺ a
k(−xj − a)m −a � xj

F13 = 0.1{sin2(3πz1) + ∑n
j=1 (zj − 1)2[1 + sin2(3πzj + 1)] + (zn − 1)2

[1 + sin2(2πzn)]} + ∑n
j=1 u(zj , 5, 100, 4) [−50, 50] 30 0

F14 = −∑n
i=1 sin(xi) × (sin(i · x2i /π))

2m
, m = 10 [−100, 100] 2 −1

F15 = [exp (− ∑n
i=1 (xi/β)2m) − 2exp (− ∑n

i=1 x
2
i )] ×

∏n
i=1 cos

2xi , m = 5 [−100, 100] 2 0

F16 = {[∑n
i sin

2(xi)] − exp(− ∑n
i=1 x

2
i )} × exp[−∑n

i=1 sin
2√|xi|] [−5, 5] 2 −1.0316

5. Experimental result and discussion

The statistical results are illustrated in Table 4. Thirty independent runs are applied and averaged
to depict the results. Three measures are used for investigating the performance of the suggested
algorithm: (1) the average (Ave), (2) the standard deviation (Std) and (3) the median (Med).

5.1. Unimodal functions

According to the nature of unimodal functions, each function has one global solution only. Conse-
quently, to examine metaheuristic algorithms in terms of convergence rate, unimodal functions are
appropriate. The quantitative results for unimodal test functions are depicted in Table 4. This table
reveals that the bWOA outperforms the other three metaheuristic algorithms in terms of the mean,
median and standard deviation on all the unimodal test functions.

5.2. Multimodal benchmark functions

Eachmultimodal benchmark function has many local minima, so they are appropriate for measuring
the ability of the algorithm to avoid local minimum points. The quantitative results in Table 4 show
that the bWOA outperforms another algorithm on four of the multimodal benchmark test functions,
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Table 2. Composite functions.

No. Function Range Dim Minimum

F17 f1, f2, f3, . . . , f10 = [−100, 100] 10 0
Sphere function[σ1, σ2, σ3, . . . , σ10] =
[1, 1, 1, . . . , 1][λ1, λ2, λ3, . . . , λ10] =
[5/100, 5/100, 5/100, . . . , 5/100]

F18 f1, f2, f3, . . . , f10 = [−10, 10] 10 0
Griewank′s function[σ1, σ2, σ3, . . . , σ10] =
[1, 1, 1, . . . , 1][λ1, λ2, λ3, . . . , λ10] =
[5/100, 5/100, 5/100, . . . , 5/100]

F19 f1, f2, f3, . . . , f10 = [−100, 100] 10 0
Griewank′s function[σ1, σ2, σ3, . . . , σ10] =
[1, 1, 1, . . . , 1][λ1, λ2, λ3, . . . , λ10] =
[1, 1, 1, . . . , 1]

F20 f1, f2 = Ackley′s function f3, f4 = [−100, 100] 10 0
Rastrigin′s function f5, f6 =
Weierstrass′s function f7, f8 =
Griewank′s function f9, f10 =
Sphere function[σ1, σ2, σ3, . . . , σ10] =
[1, 1, 1, . . . , 1][λ1, λ2, λ3, . . . , λ10] =
[5/32, 5/32, 1, 1, 5/0.5, 5/0.5, 5/100, 5/100, 5/100, 5/100]

F21 f1, f2 = Rastrigin′s function f3, f4 = [−30, 30] 10 0
Weierstrass′s function f5, f6 =
Griewank′s function f7, f8 =
Ackley′s function f9, f10 =
Sphere function[σ1, σ2, σ3, . . . , σ10] =
[1, 1, 1, . . . , 1][λ1, λ2, λ3, . . . , λ10] =
[1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32, 5/32, 5/100, 5/100]

F22 f1, f2 = Rastrigin′s function f3, f4 =
Weierstrass′s function f5, f6 =
Griewank′s function f7, f8 =
Ackley′s function f9, f10 =
Sphere function[σ1, σ2, σ3, . . . , σ10] =
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1][λ1, λ2, λ3, . . . , λ10] =
0.1 × 1/5, 0.2 × 1/5, 0.3 × 5/0.5, 0.4×
5/0.5, 0.5 × 5/100, 0.6 × 5/100,
0.7 × 5/32, 0.8 × 5/32, 0.9 × 5/100, 1 × 5/100 [−100, 100] 10 0

i.e. F9, F11, F15 and F16, for all measures. The BBA and the binary particle swarm optimization
(BPSO) algorithms have the best results on four (F10, F12, F13 and F14) and one (F8) test functions,
respectively. According to Table 4, the proposed algorithm is capable of avoiding local minima.

5.3. Composite benchmark functions

The optimization of composite benchmark test functions is a very challenging task because both
exploration and exploitation allow local optima to be avoided. The quantitative results are touted in
Table 4 and Figure 3. The results show that the bWOA has the second-best values on F19, F20 and
F22.

5.4. Engineering optimization problems

In addition to the previous results, the bWOA is evaluated with three engineering design prob-
lems; these problems have different constraints and characters. The quantitative results depicted in
Table 5 make a fair and just comparison with the nativeWOA, various penalty function (Yang 2010a)
constraint handling strategies being applied. The parameter settings are shown in Table 6.
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Table 3. Engineering optimization problems.

No. Test problems Functions

E1 Tension/compression
spring (Belegundu and
Arora 1985)

Minimize: f (x) = (x3 + 2)x2x21

where g1(x) = 1 − (x32x3/71, 785x
4
1) ≤ 0,

g2(x) = [4x22 − x1x2/12,566(x2x31 − x41) + (1/5108x21)] − 10 ≤ 0,

g3(x) = 1 − (140.45x1/x22x3) ≤ 0,

g4(x) = (x2 + x1)/1.5 − 1 ≤ 0, 0.05 ≤ x1 ≤ 2.00, 0.25 ≤ x2 ≤ 1.30, 2.00 ≤ x3 ≤ 15.00

E2 Welded beam (Ray and
Liew 2002)

Minimize: f1(x) = 1.104,71x21x2 + 0.048,11x3x4(14.0 + x2)

where g1(x) = τ − 13,600, g2(x) = σ − 30,000, g3(x) = δ(x) − 0.25,

g4(x) = x1 − x4, g5(x) = 6,000 − p, g6(x) = 0.125 − x1,

g7(x) = 1.104,71x21 + 0.048,11x3x4(14.0 + x2),

0.125 ≤ x1 ≤ 5, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.125 ≤ x4 ≤ 5

τ(x) =
√

(τ ′)2 + 2τ ′τ ′′ x2
2R

+ (τ
′′
)2, τ ′ = p√

2x1x2
, τ

′′ = MR

J
, M = P(L + x2

2
),

R =
√
x22
4

+ (
x1 + x3

2
)2, J = 2

√
2x1x2[

x22
4

+ (
x1 + x3

2
)2], σ(x) = 6PL

x4x23
, τ(x) = 6PL3

Ex23x4
,

Pc =
4.013E

√
x23x

6
4

36

L2
(1 − x3

2L

√
E

4G
), L = 14, E = 30 × 106, G = 12 × 106

E3 Pressure vessel
(Kramer 1994)

Minimize: f (x) = 0.622,4x1x3x4 + 1.778,1x2x23 + 3.166,1x21x4 + 19.84x21x3
where g1(x) = −x1 + 0.019,3x, g2(x) = −x2 + 0/009,54x3 ≤ 0,

g3(x) = −πx23x4 − (4/3)πx33 + 1,296,000 ≤ 0, g4(x) = x4 − 240 ≤ 0

0 ≤ xi ≤ 100, i = 1, 2, 10 ≤ xi ≤ 200, i = 3, 4

Welded beam

Optimization results and the statistical results are given in Table 5. Therefore, this table reveals that
the bWOA shows better performance compared with the native WOA.

Tension/compression spring

Table 5 depicts the optimization and statistical results, showing that the bWOA algorithm is superior
to the WOA on average.

Pressure vessel

The statistical results and optimization results of utilizing the bWOA and the WOA are presented in
Table 5. According to the results in this table, once more, both the bWOA algorithms are superior to
the WOA.

5.5. Convergence test

To investigate the performance evaluation of the bWOA compared with the native WOA, overall
benchmark test functions with five dimensions, tested to obtain convergence curve. Note that 30
independent runs are performed to obtain the convergence of the bWOA and theWOA. Also, all the
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Table 4. Comparison of Ave, Std and Median for the benchmark functions.

No. Measure WOA bWOA-S bWOA-V bGWO1 bGWO2 BBA BPSO GA

F1 Ave 5.2987e−42 0 0 0 0 1.8518 5.2965 10.0705
Std 1.180e−41 7.6828e−30 0 0 0 2.4981 2.7657 24.9445
Med 2.979e−45 0 0 0 0 1.2037 4.6684 2.6534

F2 Ave 4.4849e−36 0 0 0 0 0.0965 0.2292 0.269483
Std 1.0005e−35 7.772e−35 0 0 1.085e−43 0.0646 0.0938 0.23788
Med 1.503e−38 0 0 0 0 0.0880 0.2373 0.172363

F3 Ave 5.0255e−29 0 0 0 0 7.8103 22.48915 555.9039
Std 1.0798e−28 0 0 2.3841e−54 9.7981e−24 14.11401 250.693
Med 3.4899e−30 0 0 0 0 4.9511 19.09979 545.6876

F4 Ave 6.7340e−18 0 0 0 0 1.1526 2.608854 1.59375
Std 1.5042e−17 5.034e−36 0 0 0 0.6140 0.838937 1.21348
Med 7.5e−23 0 0 0 0 1.5588 7.672516 4.671173

F5 Ave 1.4953 0 0 0.2437 0 25.0743 148.0799 369.7545
Std 0.001 0 0 0 0 28.4430 137.1896 342.8893
Med 0.278 0 0 0 0 14.9324 96.0937 305.5475

F6 Ave 5.3700e−08 0 0 0.0157 0 2.6993 8.496653 6.984222
Std 4.5992e−08 0 0 0 0 2.7428 6.140883 7.010388
Med 0.2764 0 0 0 0 1.0169 2.496094 1.71875

F7 Ave 0.0024 0 0 0 1.2516e−04 0.0060 0.015542 0.047174
Std 0.0015 0.0004 0.005 0.011 0.002 0.0044 0.007474 0.043587
Med 0.0002 0 0 0 0 0.0057 0.014006 0.034778

F8 Ave −1083.2 −973.3 −1162.2 −985 −444.76 −985.3203 −988.355 −929.324
Std 171.002 127.98 98.02 1000.02 0.05 27.5790 14.21898 27.9523
Med −1020.0653 −971.23 −3220.28 −434.23 −789.32 −994.8144 −992.355 −918.613

F9 Ave 5.20 0 0 0 0 1.5850 4.977688 2.1896
Std 0 0 0 0 0 1.3352 1.597929 1.883027
Med 6.23 0 0 0 0 1.2686 5.282659 1.9901952

F10 Ave 0 0 0 0 0 1.1560 2.7255 1.399853
Std 1.9459e−15 0 0 0 0 0.7279 0.4721 1.338105
Med 4.44e−15 8.88e−17 0 0 0 0.9589 2.7969 2.316849

F11 Ave 3.0198e−15 0 0 8.8817e−16 0 0.2463 0.3873 0.7067
Std 1.9459e−15 0 0 1.4222e−17 0 0.0839 0.1302 0.3223
Med 0.0074 0 0 0 1.687e−23 0.2261 0.3862 0.7336

F12 Ave 0.0054 0 0 0 0 0.2708 0.6213 0.191197
Std 0.0053 0 0 0 0 0.3287 0.38857 0.244347
Med 1.67e−7 0.057 0.0012 0.0030 0.0008 0.1506 0.4924 0.073291

F13 Ave 0.0131 0.0336 0.212 0.621 0.112 0.1297 0.4444 0.193006
Std 9.1228e−07 0.0076 0.007844 0.4351 0.096 0.0736 0.211701 0.254864
Med 5.4e−8 0.0023 0.0020 0.214 0.098 0.427624 0.113689

F14 Ave −4.7062 0.0057 −0.0023 0 −0.002 −3.642 −3.6416 −3.885
Std 0.8910 0.0067 0.0052 0.0002 0.06 0.351 0.325 0.718
Med −1.83 −2.71 −0.003 −0.0056 −3.608 −3.582 −4.076

F15 Ave −0.4 −1 −2.654 0 0 −0.5173 −0.055483 −0.474555
Std 0.5477 0 0.69 39 0.87 0.3841 0.1351484 0.4856118
Med −7.307 −0.002 −0.5 −0.8 −0.543 −0.5908 −4.15e−109 −0.414068

F16 Ave −0.2 −1 −1.009 6.25 0.0001 3.198e−04 2.95e−04 0.001575
Std 0.4472 0.2479 1.333 0.0001 0.0001 2.334e−04 0.000215 0.000818
Med 5.95e−13 −1 5.23 2.39 11.03 2.325e−04 0.000269 0.001325

F17 Ave 100.09 1640.57 51.32 93.45 87.52 93.2475 194.8523 193.6682
Std 122.47 88.023 87.36 77.677 53.987 64.2902 60.03402 121.9127
Med 100.13 971.32 84.23 52.98 96.23 78.7049 176.0384 170.521

F18 Ave 225.45 199.24 14.7 111.98 78.65 156.6317 146.7613 205.6785
Std 115.23 113.58 231.245 33.54 9.54 31.8874 29.08005 160.9849
Med 178.98 127.11 19.36 402 109.77 154.5892 140.6424 154.8682

F19 Ave 438.99 324.25 9.02 147.33 89.574 149.6407 445.7764 384.7761
Std 84.6687 12.36 8.64 89.23 11.47 38.7091 49.3449 118.0311
Med 417.32 111.98 92.5 172.98 196.3 152.1527 443.3976 448.1912

(continued).
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Table 4. Continued.

No. Measure WOA bWOA-S bWOA-V bGWO1 bGWO2 BBA BPSO GA

F20 Ave 629.23 479.35 800.75 872.32 102.002 146.9480 479.9867 588.1262
Std 144.4 214.21 47.65 67.12 77.37 22.9687 30.19361 102.3373
Med 678.95 516.89 847.02 637.12 119.014 147.0495 477.0193 639.9012

F21 Ave 403.91 373.09 510.57 245.62 514.09 616.1212 172.0816 426.3021
Std 172.58 53.49 11.87 24.78 99.23 49.8056 64.2674 183.5344
Med 429.852 390.879 118.21 360.25 161.02 163.1106 140.9928 218.0127

F22 Ave 694.60 724.35 92.65 174.98 564.25 152.8125 691.65 914.5375
Std 208.020 46.32 87.65 74.78 158.23 33.6342 149.6255 12.32191
Med 800.025 900253 109.23 187.05 202.98 145.5394 607.9773 908.362

Figure 3. The convergence rate between bWOA andWOAon some benchmark functions. (concluded). (a) F1. (b) F4. (c) F10. (d) F14.
(e) F18 and (f ) F21.

convergence curves are averaged. Owing to space limitations and to improve the readability of the
article, only six convergence curves, i.e. (F1, F4) from unimodal functions, (F10, F14) from multi-
modal functions and (F18, F21) from composite functions, are shown in Figure 3. This figure reveals
that the bWOA outperforms the basic WOA and has faster convergence. Also, the bWOA is able to
avoid local minima with a significant convergence rate for multimodal benchmark test functions. As
shown by this figure, the bWOA has a faster convergence rate than the WOA and the capability of
finding global solutions.

In summary, the statistical results of the 25 benchmark tests show that the proposed bWOA
algorithm is very effective in solving constrained and engineering design problems.
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Table 5. Optimization results and statistical results of applying the bWOA-S, the bWOA-V and the WOA to Engineering problems.

Optimization results Statistical results

Algorithm h l t b Cost Ave Std

Welded beam design problem WOA 0.205396 3.484293 9.037426 0.206276 1.730499 1.7320 0.0226
bWOA-S 0.21 4 8 0.28125 1.2246 1.727 0.0113
bWOA-V 0.20 3.47 9.035 0.2011 1.724 1.725 0.004

Optimization results Statistical results

d D N Cost Ave Std

Tension/compression design WOA 0.051207 0.345215 12.004032 0.0126763 0.0127 0.1003
bWOA-S 0.05 0.3125 11 0.010281 0.01260 0.0180
bWOA-V 0.05 0.3429 12.08 0.01265 0.012699 0.001

Optimization results Statistical results

Ts Th R L Cost Ave Std

Pressure vessel WOA 0.812500 0.4375 42.0982 176.638 6059.7410 6068.05 65.6519
bWOA-S 1.05 0.781 40.4525 198.002 5890.32 5658.964 29.6521
bWOA-V 0.7780 0.3831 40.315 200 5880.1642 5891.964 327.007

Table 6. Parameter settings.

Parameter Value

Number of iterations 500
Number of search agents 20
Number of run repetitions 30
Crossover, mutation 0.9, 0.05

Table 7. Wilcoxon’s rank sum test.

No. p-value No. p-value No. p-value

bWOA-S versus WOA F1 0.000 F9 0.000 F17 0.237
F2 0.000 F10 0.000 F18 0.216
F3 0.000 F11 0.000 F19 0.326
F4 0.000 F12 0.000 F20 0.480
F5 0.000 F13 0.102 F21 0.932
F6 0.000 F14 0.000 F22 0.742
F7 0.000 F15 0.652
F8 0.000 F16 0.204

bWOA-V versus WOA F1 0.000 F9 0.000 F17 0.365
F2 0.000 F10 0.000 F18 0.932
F3 0.000 F11 0.000 F19 0.265
F4 0.000 F12 0.082 F20 0.265
F5 0.000 F13 0.000 F21 0.821
F6 0.000 F14 0.000 F22 0.661
F7 0.000 F15 0.346
F8 0.000 F16 0.000

5.6. Wilcoxon’s rank sum

In order to compare the results of each run, a non-parametric statistical test known as Wilcoxon’s
rank sum test for independent samples (Wilcoxon 1945) is performed over all functions at the 5%
significance level and the p-values are reported in Table 7.

The p-values show that, on most functions except F15, F21 and F22 for the bWOA-S, and F22 for
the bWOA-V, a great and significant difference is exhibited.
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Table 8. Results of the proposed bWOA-S, bWOA-V and WOA
over five TSP benchmarks.

Dataset name Optima bWOA-S bWOA-V WOA

KroA100 21282 21345 21647 21989
KroB100 22140 22406 22308 22842
KroC100 20749 21070 21320 21476
KroD100 21294 21596 22013 22083
KroE100 22068 22771 22439 22970

6. The travelling salesman problem (TSP)

This algorithm can be applied to many real-world problems, such as the water pump switching prob-
lem and the optimal scheduling of a multiple dam system (Geem 2005, 2007). In this section, the
TSP is used as a real-world application. The TSP is considered to be one of the most common and
classical examples of a combinatorial optimization problem, and has been proved to be NP-hard.
The objective in the TSP is to find the salesman’s optimal tour to visit all cities once and only once
and return to the start city after travelling the shortest possible distance. Here, the symmetrical TSP
is used, i.e. the distance from city u to city v is the same as from city v to city u (Zurada 1992). Five
cities from benchmark designs especially for the TSP are used (Reinelt 1991). The name of the five
benchmark datasets and their results are shown in Table 8. The results show that both the bWOA-S
and the bWOA-V have better results than the original WOA algorithm in all datasets.

7. Conclusion and future work

Binary versions of theWOA, namely the bWOA-S and the bWOA-V, have been proposed via transfer
functions. They are compared with five well-known metaheuristic algorithms, namely the BPSO, the
BBA, the bGWO1, the bGWO2 and aGA, over 22 benchmark functions and three engineering design
problems to investigate their evaluation performance. The statistical comparison results revealed
that both novel versions give better performance than the comparison algorithms. Furthermore, the
results prove that they are worthy of being classed as binary optimization algorithms. Moreover, the
convergence curves for the proposed algorithms when compared with the nativeWOA reveal that the
bWOAs have faster convergence rates. The focus of further research will apply the bWOAs to real-life
optimization problems with different transfer functions.
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