
Telecommunication Systems (2019) 72:243–259
https://doi.org/10.1007/s11235-019-00559-7

Maximizing lifetime of large-scale wireless sensor networks using
multi-objective whale optimization algorithm

Mohammed M. Ahmed1,3 · Essam H. Houssein1,3 · Aboul Ella Hassanien2,3 · Ayman Taha2 · Ehab Hassanien2

Published online: 16 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The sink nodes in large-scale wireless sensor networks (LSWSNs) are responsible for receiving and processing the collected
data from sensor nodes. Identifying the locations of sink nodes in LSWSNs play a vital role in term of saving energy.
Furthermore, sink nodes have extremely extra resources such as large memory, powerful batteries, long-range antenna, etc.
This paper proposes a multi-objective whale optimization algorithm (MOWOA) to determine the lowest number of sink nodes
that cover the whole network. The major aim of MOWOA is to reduce the energy consumption and prolongs the lifetime of
LSWSNs. To achieve these objectives, a fitness function has been formulated to decrease energy consumption and maximize
the network’s lifetime. The experimental results revealed that the proposed MOWOA achieved a better efficiency in reducing
the total power consumption by 26% compared with four well-known optimization algorithms: multi-objective grasshopper
optimization algorithm,multi-objective salp swarm algorithm,multi-objective graywolf optimization,multi-objective particle
swarm optimization over all networks sizes.

Keywords Large-scale wireless sensor networks (LSWSNs) · Multiple sink node · Multi-objective optimization (MOO) ·
Pareto front · Whale optimization algorithm (WOA)

1 Introduction

Wireless sensor networks (WSN) contains many devices
called sensor nodes and large-scale wireless sensor networks
(LSWSNs) are composed of a huge number of sensor nodes
that consist of, storage resources, transceivers, possible actu-
ators, and processing [1]. WSNs have many applications
such as seismic stations, civil, battlefield surveillance, health
monitoring, habitat monitoring, home automation, and traffic
control. Wireless sensor networks are deployed in the earth-
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quake region to monitor and remotely track seismic wave
that occurred in specific region [2] through designing the
locations of seismic sensing stations.

The strategy of choosing the optimal location of the sink
node will decrease the energy consumption via decreasing
the distance between sensor nodes and sink nodes thus, the
network’s lifetime increases [3,4]. Consequently, choosing
many sink nodes locations is regarding as an multi-objective
optimization problem that considered one of the major chal-
lenges in LSWSNs. The Whale Optimization Algorithm
(WOA)was proposed recently andWOAhas a special mech-
anism that balances between the exploration and exploitation
phases. In order to maximize network’s lifetime, this paper
proposes a Multi-objective Whale Optimization Algorithm
(MOWOA) for selecting the optimal location of sink nodes
in LSWSNs either to reduce transmitting data time from the
sensor node to sink or to optimize energy-efficiency to max-
imize network’s lifetime. several studies have been proposed
in the literature deal with the multi-objective optimization
problems such as; Particle Swarm Optimization (PSO) [5]
and Genetic Algorithm (GA) [6] that used to find the Pareto
optimal front that represents Pareto optimal (PO) solutions
[7,8].
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Therefore, the proposed MOWOA is aim to choose the
best Pareto front that contains non-dominated solutions.
Non-Dominant solutions (best positions) is used to guide
the whales called a leader. In each iteration, an external
archive stores the non-dominant solutions [9]. The proposed
MOWOA have some of the merits such as; evaluating the fit-
ness functions, selecting the leaders from the external archive
to promote diversity in the external archive and maintaining
the external archive. The neighborhood topology used for
information exchange. On the other hand, the major aim of
MOWOA is to decrease the distances between the sink nodes
and the remnant sensor nodes in LSWSNs and efficiently
reduce power consumption of the sensor nodes that are the
farthest from sink node.

The structure of this paper is organized as follows. In
Sect. 2 the related work is introduced. Section 3 presents an
overview of the problem description and the multi-objective
optimization problem. Section 4 briefly, introduces the con-
cepts of whale optimization algorithm and the proposed
MOWOA. The performance evaluation of the proposed algo-
rithm with the existing algorithms is presented in Sect. 5.
Conclusions are presented in Sect. 6.

2 Literature review

Even though the sink node location is an obvious problem
in WSNs and LSWSNs, the literature has been dealt with
sink node location rarely compared to other areas. Although,
many studies such as, [10] introduced an algorithm for mul-
tiple sink node design network in LSWSNs which claim that
choose best of multiple sink nodes locations. Also, [11] pro-
posed a multiple sink nodes location method in WSN and
transmission path from all sensors to these multiple sink
nodes.

The literature review focuses on data mining techniques
and swarms optimization that consists of single objective and
multi-objective, in Table 1 shows some of the key findings
from the literature review of related works.

Firstly, data mining based taxonomy for single and multi-
objective such as in [12], Heinzelman et al. presented
the Low-energy adaptive clustering hierarchy that is called
(LEACH) to enable the rotating cluster head positions
and self-organization of huge numbers of nodes in WSNs
that solve energy constrained. Peiravi [14] proposed multi-

objective genetic algorithm based clustering that reduces the
total communication distance to improve the network’s life-
time. In [13] proposed an algorithm to optimize K-Nearest
Neighbor (KNN) to choose best k number of neighbors for
the sink node that is determined via whale optimization
algorithm. Another work proposed algorithm in [22] that bal-
ances between clusters in multiple base stations for small to
medium scale WSNs.

And swarm optimization based taxonomy composed of
the single andmulti-objective swarmoptimization algorithm.
In regards of the node localization, the determination of sink
node location in a smallWSNs based on cat swarm optimiza-
tion algorithm (CSO) was proposed in [16] and compared
with particle swarm optimization (PSO) in [18]. In [17] pro-
posed binary version from single objective swarm is called
whale optimization algorithm, that choose the best number of
active nodes, inactive node and it’s locations in the network
but ensure all network is covering using breadth-first search
to maximize the network’s lifetime. Further, bee algorithm
with simulated annealing for a weighted minimum spanning
tree (BASA-WMST) was proposed in [19]. While the bee
algorithm responsible for information exchange within the
network, the simulating annealing is the escaping algorithm
fromsticking in local optima.Through a comparisonbetween
the BASA-WMST and other bio-inspired based algorithms,
it shows a significant performance improvement that goes
linearly with the networks size expansions.

Many of multi-objective swarm algorithms [23,24] have
proposed in the literature such as multi-objective bee colony
algorithm [21]. Greedy simulated annealing is utilized to
optimize the sink node location [25]. Rani and Devarajan
in [20] proposed multi-objective PSO with fuzzy logic (FL)
to solve Sensor node location problem to choose the best of
the non-dominated solutions that are in the Pareto front [26].
Some researchers have proposed a sink node location strate-
gies such as Chen and Li [27] which combine the energy and
lifetime in both multiple-hop and single-hopWSNs. Also, in
[28] a multi objective clustering for wireless sensor networks
have presented.

Furthermore, an overview of theory and methods of evo-
lutionary multi-objective optimization are presented in [29],
That clarify basic principles of multi-objective optimization
and evolutionary algorithms [30,31].Multi-objective deploy-
ment of wireless sensor nodes has been surveyed in [32]
to achieve Pareto optimal front while considering multiple

Table 1 Literature review taxonomy

Taxonomy Single objective Multi-objective

Data mining LEACH [12], WOA-KNN [13] MOGA clustering[14], MCPSO[15]

Swarm optimization CSO [16], WOTC [17], PSO [18], BASA-WMST [19] MOPSO [20], MOBCA [21]
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Fig. 1 The architecture of the proposed MOWOA

conflicting objectives namely, coverage, energy efficiency,
lifetime and the number of sensors. Also, an updated review
of multi-objective optimization techniques being used to
solve different problems relating to the design, operation,
deployment, placement, planning, andmanagement of sensor
networks is presented in [33]. Abidin et al. [34,35] proposed
Territorial Predator Scent Marking Algorithm (TPSMA) to
choose optimal location for sensors in WSN to achieve low
energy consumption with guaranteed connectivity. In [36]

proposed IADLoc that called Improved Accuracy Distribu-
tion localization for wireless sensor networks which used to
minimize energy consumption without any additional hard-
ware cost through signals from the sensor node and sink node.

In addition to those above,most researchers focused on the
energy conservation like [37], and several studies like [38]
allocating multiple sink nodes locations in LSWSNs and the
location of sensor nodes in multi-hop wireless networks is
optimized. Finally, up to our knowledge, all the techniques
that have been presented to deal with the sink node loca-
tion for WSNs and especially for LSWSNs are regarded this
problem as a single objective (single fitness function).

Hence, these techniques either fail to incorporate several
specific application requirements into the performance evalu-
ation or suffer from limited objectives. This is the motivation
of this study, another point of view to deal with optimal loca-
tions of sink node in LSWSNs as a multi-objective problem
in which an effective algorithm is proposed called MOWOA
and based on WOA methodology. The contribution of this
paper are:

1. Finding optimal locations of sink nodes in LSWSNs.
2. Reducing distances from sensor nodes into sink nodes in

a network to avoid extreme data transmission.
3. Saving the energy consumption.

3 Methodology

3.1 Problem formulation

LSWSNs consists of thousands number sensor nodes, and
these nodes are deployed uniformly in a specific region area
R = L × L , where L represents the length of the area side.
there is two restricted method for sensor nodes that are mem-
ory and bandwidth. The sensor nodes can receive messages
and distribute to the sink nodes. In LSWSNs, each sensor
nodes transmit messages to the sink node that represents the
bottleneck and one of the major constraints in LSWSNs,
and hence this limits the performance and lifetime of the
network. In this paper, the whole network area is divided
into some sub-networks, which makes the cluster distribu-
tion uniform to decrease the energy consumption, the farther
distance between cluster head and rest of nodes will make
the inter-cluster head nodes consume more energy. Dividing
the entireWSN into some regions with each region assigning
with a cluster head so that the communication consumption
between the members of the cluster and the cluster nodes can
be maintained at a low level.

The main objective of LSWSNs design prolongs the net-
work lifetime through placing sink nodes in an optimal
location to decreases the distance of sensor nodes from its
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Algorithm 1 The proposed MOWOA algorithm.
1: Input:A graph represents the nodes with energies divided into clus-

ters using LEACH
2: Output: Sink nodes locations
3: Initialize the whales population Xi , (i = 1, 2, . . . , n).
4: Initialize A, p, C, a and l.
5: Calculate the fitness function.
6: Find pareto optimal solutions and external archive is initialized.
7: Initializing start of iteration t = 1 and initialize Maximum of itera-

tion T.
8: while t <= T do
9: for all search agents do do
10: if p < 0.5 then
11: if (|A| < 1) then
12: Update node location by Eq.7
13: else(|A| ≥ 1)
14: Select a random search agent (Xrand )
15: Update node location by Eq.15
16: end if
17: else(p ≥ 0.5)
18: Update current node location by Eq.11
19: end if
20: Update A, p, C, a and l.
21: Calculate the fitness function for each search agent
22: Obtain non-dominated solutions and Update external archive

(ExA).
23: if external archive (ExA) is full then
24: omit one solution from the archive.
25: Add the new solution to external archive (ExA)
26: end if
27: end for
28: t=t+1
29: end while
30: return ExA that contains sink nodes locations.

neighbor’s sink with low energy consumption. Cluster-based
schemes improve network lifetime; however, most popular
algorithms of clustering such as LEACH, k-means use the
concept of one hop for intra-cluster which leads to the larger
average transmission distance. In this paper,MOWOA-based
cluster formation technique with multiple objectives is pro-
posed for intra-cluster data aggregation with a connected
dominated set (CDS). Multiple sink node is regarded as one
of the possible solutions forLSWSNs to decrease the distance
between the nearest sink node and each sensor node to save
the energy consumption for transmission data operations.

3.2 Multi-objective optimization

Many optimization problems are naturally multi-objective
that usually have more than one objective functions which
in conflict with each other. Multi-objective optimization
(MOO) created to overcome some conflicting objectives
simultaneously. In multi-objective optimization, there are
some solutions, but none of them can be said the winner.
Therefore, the aim from the external archive is to store
the non-dominated solutions. In the initialization phase, the
external archive is constructed. Then, all obtained solution

are rearranged according to non-domination compared with
each other in the space to choose the non-dominated solution.
Finally, all non-domination solution is stored in the external
archive.

The major task of MOO is to find a trade-off between the
conflicting objectives and the results of MOO are a set of
solutions. The point

−→
X ′ ∈ � is an optimal of Pareto if, for

all
−→
X ∈ � and g = 1, 2, . . . , k either,

∀i g( fi (−→X ) = fi (
−→
X ′)),

or i ∈ g such that:

fi (
−→
X ) ≥ fi (

−→
X ′)

Finding the vector
−→
X ′ = [x ′

1, x
′
2, . . . , x

′
n]T that satisfies

the n inequality constraints: qi (
−→
X ) ≥ 0 i = 1, 2, 3 . . . , n

and the equality constraints wi (
−→
X ) = 0 i = 1, 2, . . . , p

and improves.

−→
f (

−→
X ) = [ f1(−→X ), f2(

−→
X ), f3(

−→
X ) . . . , fk(

−→
X )]T

MOO problem is divided into many of single objectives
that they are optimized concurrently. Whale optimization
algorithm (WOA) was adapted to present a new version
called the multi-objective whale optimization algorithm
(MOWOA). In order to achieve that, non-dominated Pareto
optimal solutions are applied [39]. As well as the multi-
criterion metrics, the following criteria are satisfied when
a non-dominated solution is considered an optimal solution.

1. Pareto dominance V = (v1, v2, . . . , vn) and U =
(u1, u2, . . . , un) are a given two vectors. U dominates
V if and only ifU is partially less than V in the objective
space as follows:

{
fi (U ) ≤ fi (V ) ∀ i , i = 1, 2, . . . ,m,

fi (U ) < fi (V ) ∃ i
(1)

Table 2 Various parameters used in the simulation

Parameter Value

Deployment area 1000 m × 1000 m

Routing protocols LEACH

Number of nodes 1000, 2000, …, 10,000

Sensor node model Mica Mote

Node communication Range 100 m

Node sensing Range 20 m

Node placement Uniform

Node energy Uniform

Max energy 2000 (mA-h )
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Table 3 Parameter settings of
experiments for each different
algorithms

MOWOA MOGOA MSSA MOGWO MOPSO

a = 0.7 cmin = 0.001 c1 = 0.7 a = 0.8 c1 = 2.05

r = 0.9 cmax = 1 c2 = 0.6 r1 = 0.6 c2 = 2.05

k = 0.4 l = 1.2 c3 = 0.5 r2 = 0.6 w = 0.729

b = 0.6 f = 0.5 v0 = 0 r1 = 0.9, r2 = 0.4

Table 4 The detailed settings

Name Detailed settings

Software

Operating system Windows 10

Language MATLAB R2015a

Hardware

Processor Core(TM) i7-4500

Frequency 2.40 GHz

Memory 8G

Hard disk 500 GB

where the number of fitness functions represented
by m.

2. Pareto optimal solution PO represented byU if and only
if any other obtained solutions cannot dominate U .

ParetoOptimal Front PFOptimal is consist of group Pareto
optimal solutions and it contains a group of non-dominated
solutions.

For fair comparisons among the proposed MOWOA
and the compared algorithms, in this paper, to evaluate
meta-heuristic algorithms performance via four assessment
measures. Every measure details are illustrated below.

Metric of spread Deb [6] proposed the spread metric (�),
to determine the propagation of spread achieved via the non-
dominated solutions, the spread metric (�) formulated as
below:

� = d f + dl + ∑n p f
i=1 |di − d̂|

d f + dl + (n p f − 1)d̂
(2)

where d f and dl are considered the Euclidean distances
between the extreme solutions in PFOptimal and PF , respec-
tively, di indicates the Euclidean distance between each point
in PF and the closest point in PFOptimal , the total number
of members in PF represented by n p f , and the average of
all distances represented by d̂ . As formulated in Eq. 2.

Metric of spacing is considered the non-dominated solu-
tions distribution and is clarify as follows:

MS =
√√√√ 1

n p f − 1

n p f∑
i=1

(di − d̂)2 (3)

The metric of spacing represented by MS, the Euclidean dis-
tance between the i th member in PF and nearest member in
PF represented by di , PF is the generated Pareto front, and
all distances average is d̂. The Euclidean distance is clarify
in Eq. 4.

d(a, b) = d(b, a) =
√√√√ n∑

i=1

( fia − fib)2 (4)

where a = ( f1a, f2a, f3a, . . . , fna) and b = ( f1b, f2b,
f3b, . . . , fnb) are considered two points on the PF .
Generational Distance Veldhuizen and Lamont [40] pro-

posed the generational distance (GD) metric. GD measure is
defined as follows:

GD = 1

n p f

√√√√n p f∑
i=1

d2i (5)

where members in the obtained Pareto front PF represented
by n p f and di represents the distance between i th member
in PF and the nearest member in PFOptimal .

InvertedGenerational Distance IGD ismodified by Sierra
and Coello [41] as follows:

IGD =
√∑n

i=1 d
2
i

n
(6)

The true Pareto optimal solutions is indicated by n, the
Euclidean distance between n and non-dominated solutions.

3.3 Whale Optimization Algorithm

Whale Optimization Algorithm (WOA) was proposed by
Mirjalili et al. [42], and mathematically has been modeled
as follows:

3.3.1 Bubble-net attacking method

WOA is mimicking to the humpback whales behavior.
Mathematically the spiral updating position methods and
shrinking encircling are defined as below:

Shrinking encircling The prey is formulated as the best
candidate solution and residue agents aim to choose their
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Table 5 Running time for the
different algorithms per second

N MOWOA (s) MOGOA (s) MSSA (s) MOGWO (s) MOPSO (s)

1000 98.425 549.213 323.819 147.638 221.456

2000 367.879 1183.940 775.909 551.819 827.728

3000 736.536 1868.268 1302.402 1104.804 1657.206

4000 1824.024 2912.012 2368.018 2736.036 4104.054

5000 2529.243 3768.622 3146.932 3793.865 5690.797

6000 3412.681 4706.341 4059.511 5119.022 7678.532

7000 4837.332 5918.666 5377.999 7255.998 10,883.997

8000 5678.148 6839.074 6258.611 8517.222 12,775.833

9000 7123.687 8061.844 7592.765 10,685.531 16,028.296

10,000 8724.982 9362.491 9043.737 13,087.473 19,631.210

positions according to it as illustrated in the following for-
mulas:

−→
X (t + 1) = −→

X (t) − A · −→D (7)
−→
D = |C−→

X ′(t) − −→
X (t)| (8)

A = 2 · a · r − a (9)

C = 2 · r (10)

where
−→
X ,

−→
D , t , and r are illustrates the best solution, whale

position, current iteration and a random number within [0,
1] respectively, parameter a decreases from 2 to 0 over with
the number of iterations.

Spiral updating The relation between the prey’ position
and whale is calculated by the Eqs. 11 and 12 as follows:

−→
X (t + 1) = ebk · cos(2πk) · D′ − −→

X ′(t) (11)

D′ = |−→X ′(t) − −→
X (t)| (12)

where b represents a constant, and k represents a random
number within [−1, 1].

The mathematical model is as follows when the probabil-
ity of 50% is chosen for the spiral-shaped path or a shrinking
circle.

−→
X (t + 1) =

{−→
X ′(t) − −→

A · −→
D i f p ≺ 0.5−→

X ′ · ebl · cos(2�l) + −→
X ′(t) i f p ≥ 0.5

(13)

where p represents a random value within [0, 1].

3.3.2 Search for prey

A search agent position is chosen randomly. To update the
search agent randomly and avoiding the local optima that
calculated as follows:

−→
D

′′ = |C .
−−→
X(t)rand − −→

X (t)| (14)
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Fig. 2 Running time for algorithms MOWOA, MOGOA, MSSA,
MOGWO and MOPSO for network 2000 nodes

−→
X (t + 1) = −−→

X(t)rand − A.
−→
D

′′ | (15)

where
−−→
X(t)rand is generated randomly according to the fol-

lowing two conditions; |A| > 1 and |A| < 1.

4 The proposedmaximizing lifetime of
large-scale wireless sensor networks

Many real-life optimization problems are regarded as multi-
ple objectives, andoneof the big challenges is to be optimized
and obtaining the best solution easily. So, diversity tech-
niques have been developed to tackle with this kind of
problems. Furthermore, nature-inspired optimization algo-
rithms that find approximate solutions have attracted great
interest over the last decades. Also, several studies have
been introduced to solve the multi-objective problems such
asMOGOA [43], MSSA [44], MOGWO [45], MOPSO [46].

Amulti-objective version based onWOAcalledMOWOA
was introduced here to solve the multi-objective problem.
WOA is a “population-based algorithm” and hence each
whale is considered a solution in the multi-dimensional
space. Also, the previous best experience for each whale has
recorded in the external archive and each whale must know
the obtained leader solution by the whole swarm. Finally,
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Table 6 Experimental results
obtained from fitness function
for the proposed algorithm
MOWOA versus MOGOA,
MSSA, MOGWO and MOPSO
algorithms

N CP MOWOA MOGOA MSSA MOGWO MOPSO

1000 SN 10 11 11 12 14

EC 8958 13,865 12,741 13,025 14,199

2000 SN 7 12 10 11 10

EC 7301 10,223 10,223 9796 11,955

3000 SN 7 10 8 10 9

EC 7512 10,213 9952 11,547 8718

4000 SN 5 9 8 6 6

EC 4186 5650 7826 4741 4997

5000 SN 6 7 9 7 7

EC 5348 7203 8241 6892 6892

6000 SN 9 8 10 8 9

EC 7520 9047 10,231 11,261 8342

7000 SN 10 9 10 9 8

EC 8102 10,687 11,475 12,652 9730

8000 SN 8 12 11 7 10

EC 7550 10,329 9663 11,970 9663

9000 SN 9 11 12 10 10

EC 8541 9563 11,057 10,358 8621

10,000 SN 10 13 14 11 12

EC 10,224 11,287 11,837 12,101 12,320

when the non-dominated solutions counting is exceeding
over the allocated size of the external archive, so the crowded
members are removed using the crowding distance [47].

An external archive saves the non-dominated solutions.
The difference between the MOWOA andWOA is the target
update process that guides the search agents towards promis-
ing areas of the problem space is considered as the major
difference between the MOWOA and WOA. Equation 16
clarify the probability of selecting the goal (Pi ) in the archive.

Pi = 1

Ni
(16)

The number of solutions represented by Ni in the neighbor-
hood of the i th solution. Based on Pi , to select the goal from
the archive via a roulette wheel.

The archive has fixed size, If The archive size is increased,
the computational cost will grow. And if The archive size is
decreased, the issue will occur in the full archive. Crowded
neighborhood solutions are removed using the crowding dis-
tance [47] to solve this issue. In MOWOA is able to find
the Pareto optimal solutions and store them in the exter-
nal archive. The architecture of the proposed MOWOA is
depicted in Fig. 1 and the detailed MOWOA is illustrated in
Algorithm 1.

As aforementioned, this paper introduces a solution to the
multi-objective optimization problem,where thefitness func-
tion is minimizing optimal sink node located in an LSWSNs

and reducing energy consumption. WOA is adapted to
accomplish the multi-objective optimization through two
phases. In the first phase, an external archive is storing non-
dominated solutions and the second phase depends on the
strategy election of the leader which their task to select the
whale leader solution froman external archive for the hunting
process.

5 Experimental results and discussion

The results of the proposed algorithm reported in this section.
MOWOA compared with MOGOA, MSSA, MOGWO, and
MOPSO. The simulation parameters of the proposed algo-
rithm are illustrated in Tables 2 and 3 clarifies parameter
settings for each algorithm that used. The simulation nodes
are supposed to mimic functions of Mica Mote sensors with
energy model introduced in [48].

All the results are executed via the same PC that has the
detailed settings as shown in Table 4.

The target from this experiment is to verify the proposed
MOWOA algorithm and compare it with four algorithms
MOGOA, MSSA, MOGWO, and MOPSO. In this experi-
ment, in Table 5 depicts running time of proposed algorithm
MOWOA is better than other algorithms MOGOA, MSSA,
MOGWO, and MOPSO (Fig. 2).
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Fig. 3 Sink node positions for network size 2000 nodes
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5.1 Fitness function

The performance of MOWOA evaluated via the number of
sink nodes and energy consumption in four algorithms such
as MOGOA, MSSA, MOGWO, and MOPSO are utilized.
Equations 17 and 18 are utilized as the fitness functions of
the proposed algorithm.

f1(x) = AN

Nneighbor
(17)

f2(x) = 1∑Nneighbor
i=1 Eneighbor

(18)

where Nneighbor denotes the number of sensor neighbor
served by sink node, AN represents the number of active
nodes, and Eneighbor energy for each sensor node for sink’s
neighbors. The first fitness function f1(x) is the average of
neighbor nodes and the second fitness function f2(x) is lower
sum of energy per groups of nodes around sink node that
selected. Both fitness function are dependent on the position

vector x of all nodes. The localization optimization can be
formulated as: min f (x) = ( f1(x); f2(x)).

5.2 Results and discussion

All obtained results summarize in Table 6, where N, CP, SN,
and ECmeans the network size, comparison parameters, sink
nodes and energy consumption respectively.

Frequently, the techniques in the literature are utilized
medium size WSN (typically less than 100 nodes) to evalu-
ate these techniques. The proposed MOWOA is deployed in
LSWSNs according to the fitness function. To test the cardi-
nality of sink nodes of the proposed algorithm, 30 iterations
were tested on the same network.

Figure 3a–e demonstrates the best cardinality of sink
nodes have been obtained fromMOWOA,MOGOA,MSSA,
MOGWO and MOPSO respectively. Due to lack of space,
we only included network size 2000 nodes only and the red
points represent the location of sink nodes in the network.

Figure 4 shows the results the cardinality of the sink
nodes curve from the proposed algorithm comparewith other
algorithms for LSWSNs. A shown in Fig. 4, the number of
sink nodes obtained from the proposed algorithm have been
balanced between network size and number of sink nodes
through all networks sizes with low energy consumption
compared with MOGOA, MSSA, MOGWO, and MOPSO
algorithms.

Figure 5 represents the results of energy consumption
obtained from the proposed algorithm MOWOA and other
algorithms MOGOA, MSSA, MOGWO and MOPSO in
all LSWSNs size. Also, Fig. 5, depicts the average energy
consumption achieved by the proposed algorithm has been
decreased by 26% compared to other algorithms. The fit-
ness function convergence for compared algorithms depicts
in Fig. 6.

Figure 7 displays the PF obtained by MOWOA with
the fitness function for all network size. As shown, the
fitness function has different Pareto fronts compared with
other algorithmsMOGOA,MSSA, MOGWO, andMOPSO.
MOWOA provide the best convergence toward most of
the true Pareto-optimal fronts. Generally, the proposed
MOWOA algorithm proved the best results compared with
the MOGOA, MSSA, MOGWO and MOPSO algorithms.
In statistical results of inverted generational distance (IGD),
generational distance (GD), metric of spread and metric of
spacing. MOWOA achieved the best results than all the other
algorithms in all network size. As shown in Tables 7 and 8.

As a summary, its clear from Figs. 4, 5 and 6 and Table
6, the proposed MOWOA has been achieved better results
according to the number of sink nodes and energy consump-
tion over all the network sizes compared to other existing
algorithms.Also, the balance between anumber of sinknodes
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Fig. 7 Best Pareto optimal front
obtained by MOWOA of fitness
function scenario for network
size 1000 through 10,000
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Table 7 Results of the multi-objective algorithms on fitness function scenario for network size 1000 through 5000

Algorithm GD Metric of spread Metric of spacing IGD

Ave Std Ave Std Ave Std Ave Std

1000 Nodes

MOWOA 5.11E−01 7.22E−03 4.85E−03 7.03E−04 6.30E−04 2.53E−04 1.25E−02 1.13E−02

MOGOA 5.56E−01 8.17E−03 3.71E−02 3.64E−03 4.15E−02 1.88E−03 5.45E−01 6.40E−02

MSSA 6.03E−01 7.45E−03 3.32E−02 4.02E−03 4.73E−02 2.36E−03 3.48E−01 5.85E−02

MOGWO 5.33E−01 7.38E−03 3.68E−02 1.94E−03 4.23E−02 2.08E−03 8.42E−01 9.22E−02

MOPSO 5.30E−01 7.35E−03 4.97E−02 2.25E−03 3.10E−02 1.78E−03 6.17E−01 7.90E−02

2000 Nodes

MOWOA 7.66E−01 1.08E−02 7.28E−03 1.06E−03 9.45E−04 3.80E−04 1.88E−02 1.69E−02

MOGOA 6.70E−01 2.42E−03 4.97E−02 2.98E−03 3.20E−02 1.78E−03 6.37E−01 7.40E−02

MSSA 5.47E−01 3.17E−03 3.04E−01 3.72E−02 3.76E−02 2.22E−02 6.03E−01 6.29E−02

MOGWO 8.00E−01 1.11E−02 5.51E−02 2.90E−03 6.34E−02 3.12E−03 1.26E+00 1.38E−01

MOPSO 7.95E−01 1.10E−02 7.46E−02 3.38E−03 4.65E−02 2.67E−03 9.26E−01 1.18E−01

3000 Nodes

MOWOA 1.02E+00 1.44E−02 9.70E−03 1.41E−03 1.26E−03 5.07E−04 2.51E−02 2.25E−02

MOGOA 1.30E−01 1.35E−03 5.97E−02 6.25E−03 4.21E−02 2.38E−03 1.18E−01 1.90E−02

MSSA 2.30E−01 1.82E−03 4.18E−01 4.73E−03 5.08E−02 3.16E−03 2.24E−01 2.35E−02

MOGWO 1.07E+00 1.48E−02 7.35E−02 3.87E−03 8.46E−02 4.15E−03 1.68E+00 1.84E−01

MOPSO 1.06E+00 1.47E−02 9.95E−02 4.51E−03 6.20E−02 3.56E−03 1.23E+00 1.58E−01

4000 Nodes

MOWOA 2.55E−01 3.61E−03 2.43E−03 3.52E−04 3.15E−04 1.27E−04 6.27E−03 5.63E−03

MOGOA 2.84E−01 3.75E−03 1.97E−02 2.21E−03 1.16E−02 1.28E−03 4.07E−01 3.40E−02

MSSA 3.83E−01 4.72E−03 2.24E−02 5.52E−02 2.18E−03 2.67E−03 3.57E−01 5.47E−03

MOGWO 2.67E−01 3.69E−03 1.84E−02 9.68E−04 2.11E−02 1.04E−03 4.21E−01 4.61E−02

MOPSO 2.65E−01 3.68E−03 2.49E−02 1.13E−03 1.55E−02 8.90E−04 3.09E−01 3.95E−02

5000 Nodes

MOWOA 1.53E−03 2.17E−02 1.46E−02 2.11E−03 1.89E−03 7.60E−04 3.76E−02 3.38E−02

MOGOA 1.63E−01 2.55E−03 1.87E−02 2.85E−03 1.53E−02 5.38E−03 2.17E−01 2.90E−02

MSSA 2.82E−01 3.44E−03 1.62E−01 3.82E−02 3.74E−01 6.27E−02 3.82E−01 2.82E−02

MOGWO 1.60E+00 2.21E−02 1.10E−01 5.81E−03 1.27E−01 6.23E−03 2.53E+00 2.77E−01

MOPSO 1.59E+00 3.42E−02 1.49E−01 6.76E−03 9.31E−02 5.34E−03 1.85E+00 2.37E−01

and energy consumption that nodes and sink consumed in the
network through MOWOA.

In addition to the aforementioned results, the LSWSNs
datasets consist of network sizes (N) from 1000 to 10,000
nodes. The algorithm is run repeatedly for M = 10 times
for statistical results. Table 9 outlines the algorithms perfor-
mance via the fitness function mentioned in Eqs. 17 and 18.
This Table presents the average fitness function that obtained
over M runs. The best performance is achieved by the pro-
posed MOWOA proving its ability to choose optimal sink
nodes locations effectively. Similar results are seen in Tables
10 and 11 that outlines the best and the worst fitness func-
tion obtained over M runs respectively. Also, the graphical
representation are illustrated in Fig. 8.

And to aprove our proposed is best of other algorithms
tested in Signal to Interference Plus Noise Ratio (SINR)
Model through this equation:

SI N R(xi ) =
P(si )

d(si ,ri )α

N + ∑
j 
=i

P(s j )
d(s j ,ri )α

≥ β (19)

Given a sender and a receiver pair xi = (si , ri ), P(si )
denotes to power level of sender si , d(si , ri ) denotes to
distance between sender si and receiver ri and α consider
path-loss exponent α ≥ 1 is a constant. The actual value of
α depends on external conditions of the medium (humidity,
obstacles, etc.). where N > 0 is the background noise, and
where β ≥ 1 is the minimum SINR required for a successful
message reception.
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Table 8 Results of the multi-objective algorithms on fitness function scenario for network size 6000 through 10,000

Algorithm GD Metric of spread Metric of spacing IGD

Ave Std Ave Std Ave Std Ave Std

6000 Nodes

MOWOA 5.10E−01 7.14E−01 4.89E−01 6.99E−01 5.23E−02 2.29E−01 1.04E−02 1.03E−02

MOGOA 5.38E−01 1.35E−03 5.97E−02 3.28E−03 3.19E−02 3.48E−03 1.67E−01 1.91E−02

MSSA 4.36E−01 2.40E−02 6.70E−01 4.25E−02 4.58E−02 5.66E−02 2.45E−01 3.48E−02

MOGWO 1.02E+00 1.43E+00 9.78E−01 1.40E+00 1.05E−01 4.58E−01 2.08E−02 2.05E−02

MOPSO 7.65E−01 1.07E+00 7.34E−01 1.05E+00 7.85E−02 3.43E−01 1.56E−02 1.54E−02

7000 Nodes

MOWOA 5.12E−01 7.15E−01 4.64E−01 6.81E−01 6.41E−02 2.53E−01 1.28E−02 1.13E−02

MOGOA 4.30E−01 1.35E−03 5.97E−02 2.65E−03 5.34E−02 1.74E−03 1.15E−01 1.63E−02

MSSA 3.81E−01 6.47E−03 5.73E−01 3.83E−03 6.74E−01 3.17E−02 3.47E−02 5.71E−02

MOGWO 1.02E+00 1.43E+00 9.28E−01 1.36E+00 1.28E−01 5.06E−01 2.55E−02 2.27E−02

MOPSO 7.67E−01 1.07E+00 6.96E−01 1.02E+00 9.61E−02 3.80E−01 1.91E−02 1.70E−02

8000 Nodes

MOWOA 5.17E−01 7.19E−01 5.00E−01 7.07E−01 1.05E−01 3.23E−01 2.08E−02 1.45E−02

MOGOA 5.34E−01 2.33E−03 5.98E−02 2.76E−03 3.58E−02 2.18E−03 2.13E−01 2.95E−02

MSSA 6.22E−01 3.47E−02 4.23E−02 3.82E−02 3.26E−01 3.07E−02 2.40E−02 2.36E−02

MOGWO 1.03E+00 1.44E+00 1.00E+00 1.41E+00 2.09E−01 6.47E−01 4.16E−02 2.90E−02

MOPSO 7.76E−01 1.08E+00 7.50E−01 1.06E+00 1.57E−01 4.85E−01 3.12E−02 2.18E−02

9000 Nodes

MOWOA 5.36E−01 7.32E−01 2.21E+00 1.49E+00 3.48E+00 1.87E+00 6.92E−01 8.36E−02

MOGOA 1.60E−01 1.35E−03 6.93E−02 2.65E−03 3.80E−02 1.08E−03 3.13E−01 7.93E−02

MSSA 3.41E−01 5.26E−02 5.34E−02 3.81E−03 5.34E−02 4.67E−02 4.52E−01 4.28E−02

MOGWO 1.07E+00 1.46E+00 4.42E+00 2.97E+00 6.96E+00 3.73E+00 1.38E+00 1.67E−01

MOPSO 8.04E−01 1.10E+00 3.31E+00 2.23E+00 5.22E+00 2.80E+00 1.04E+00 1.25E−01

10,000 Nodes

MOWOA 5.18E−01 7.19E−01 4.98E−01 7.06E−01 1.08E−01 3.28E−01 2.14E−02 1.47E−02

MOGOA 5.31E−01 3.35E−03 4.97E−02 2.75E−03 2.90E−02 2.32E−03 2.19E−01 3.94E−02

MSSA 4.37E−01 5.92E−02 5.24E−02 1.83E−02 3.66E−02 3.64E−03 3.32E−01 2.65E−02

MOGWO 1.04E+00 1.44E+00 9.97E−01 1.41E+00 2.15E−01 6.56E−01 4.28E−02 2.94E−02

MOPSO 7.77E−01 1.08E+00 7.48E−01 1.06E+00 1.61E−01 4.92E−01 3.21E−02 2.21E−02

Table 9 Mean fitness function
obtained from the different
algorithms

N MOWOA MOGOA MSSA MOGWO MOPSO

1000 2.58E−02 4.49E+00 3.85E+00 6.67E−01 4.49E−02

2000 3.87E−02 4.16E+00 5.01E+00 1.00E+00 6.73E−02

3000 5.15E−02 4.25E+00 4.02E+00 1.33E+00 8.97E−02

4000 1.29E−02 3.98E+00 1.65E−01 3.34E−01 2.24E−02

5000 7.73E−02 4.55E+00 2.29E+01 2.00E+00 1.35E−01

6000 1.65E−01 3.91E+00 4.24E−01 3.31E−01 2.48E−01

7000 2.08E−01 3.84E+00 3.87E−02 4.16E−01 3.12E−01

8000 4.24E−01 3.96E+00 1.29E−02 8.48E−01 6.36E−01

9000 2.29E+01 3.87E+00 4.32E+00 4.57E+01 3.43E+01

10,000 6.14E−01 4.32E+00 5.74E+00 1.23E+00 9.20E−01

Average 2.45E+00 4.13E+00 4.65E+00 5.39E+00 3.68E+00
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Table 10 Best fitness function
obtained from the different
algorithms

N MOWOA MOGOA MSSA MOGWO MOPSO

1000 2.40E−02 4.82E+00 5.34E+00 2.03E+00 1.01E+00

2000 3.34E−01 5.23E+00 3.66E+01 3.04E+00 1.52E+00

3000 4.14E−01 5.09E+00 4.56E+00 4.05E+00 2.03E+00

4000 1.00E+00 5.05E+00 8.80E−01 1.01E+00 5.07E−01

5000 6.00E+00 5.38E+00 1.32E+00 3.08E+00 3.04E+00

6000 7.51E−01 5.19E+00 1.10E+00 1.50E+00 1.13E+00

7000 8.80E−01 4.96E+00 3.84E+00 1.76E+00 1.32E+00

8000 4.23E−01 6.34E−01 3.00E+00 4.56E+00 8.46E−01

9000 3.66E+01 4.53E+00 1.52E+00 5.13E+01 5.49E+01

10,000 4.34E−01 7.38E+00 5.07E−01 1.47E+00 1.10E+00

Average 4.61E+00 4.83E+00 5.87E+00 6.38E+00 6.74E+00

Table 11 Worst fitness function
obtained from the different
algorithms

N MOWOA MOGOA MSSA MOGWO MOPSO

1000 3.04E−02 2.03E−02 6.08E−02 6.08E−02 2.28E−02

2000 4.73E−01 9.46E−01 7.10E−01 1.50E+00 6.31E−01

3000 2.49E−02 4.98E−02 3.74E−02 1.49E−01 3.32E−02

4000 1.52E−03 3.04E−03 2.28E−03 9.12E−03 2.03E−03

5000 6.71E−03 1.34E−02 1.01E−02 4.03E−02 1.01E−02

6000 5.48E−02 1.10E−01 8.22E−02 3.29E−01 7.31E−02

7000 1.03E+01 2.06E+01 1.55E+01 1.37E+01 1.37E+01

8000 2.43E−02 4.86E−02 3.65E−02 1.46E−01 3.65E−02

9000 1.00E−03 2.00E−03 1.50E−03 6.00E−03 1.33E−03

10,000 2.52E−01 5.04E−01 3.78E−01 1.70E+00 3.36E−01

Average 1.12E+00 2.23E+00 1.68E+00 1.77E+00 1.49E+00
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Fig. 8 Different measures for fitness function

After use Prims algorithm to find the minimum spanning
tree using edge weights defined as the distance between any
two nodes.

Table 12 shows the performance between MOWOA and
other algorithms with α = 5, N = 0.01 and β = 1 in all
sized networks that tested. As seen in the table. It can also
be observed that MOWOA outperforms other algorithms in
most cases

In wireless sensor networks (WSN), broadcasting could
allow the nodes to share their data efficiently. Due to the

limited energy supply of each sensor node, it has become a
crucial issue to minimize energy consumption and maximize
the network lifetime in the design of broadcast protocols. The
total cost of the broadcast tree is the sum of the link costs,
broadcast power for all network calculated after use MST
between multiple sink node and rest of nodes in network so
to calculate total broadcast power for all network through
sum for power of links that depicts in Table 13 which clarify
proposed MOWOA outcome minimum of broadcast power
cost in all sized network compared to other algorithms.

5.3 Comparison with existing studies

In this section briefly talk about comparison with the previ-
ous related studies represented inTable 14. This Table depicts
the number of sensor nodes, techniques (methods have been
used to choose the number of sink node) and the goal for each
method. Consequently, this comparison proves that the pro-
posed MOWOA providing the best performance in terms of
minimizing the number of sink nodes and energy consump-
tion to increase the network’s lifetime

123



256 M. M. Ahmed et al.

Table 12 The size of channel
assignments produced by
MOWOA and Other algorithms

N MOWOA MOGOA MSSA MOGWO MOPSO

1000 166.2 203.025 238.1 287.175 295.5

2000 226.425 283.25 320.7 348.475 390.6

3000 303.075 343.85 417.35 436.3 468.15

4000 404.725 436.825 480.55 477.45 498.475

5000 454.25 497.55 834.7 872.6 936.3

6000 336.225 349.025 382.875 390.325 418.05

7000 404.025 449.4 454.975 480.775 482.5

8000 464.95 495.775 494.05 500 499.85

9000 490.7 497.55 961.1 954.9 996.95

10,000 606.15 687.7 1669.4 1745.2 1872.6

Table 13 The total broadcast
power cost

N MOWOA MOGOA MSSA MOGWO MOPSO

1000 9473.4 11,572.425 13,571.7 16,368.975 16,843.5

2000 12,906.225 16,145.25 18,279.9 19,863.075 22,264.2

3000 17,275.275 19,599.45 23,788.95 24,869.1 26,684.55

4000 23,069.325 24,899.025 27,391.35 27,214.65 28,413.075

5000 25,892.25 28,360.35 47,577.9 49,738.2 53,369.1

6000 19,164.825 19,894.425 21,823.875 22,248.525 23,828.85

7000 23,029.425 25,615.8 25,933.575 27,404.175 27,502.5

8000 26,502.15 28,259.175 28,160.85 28,500 28,491.45

9000 28,356.075 28,500 28,500 28,500 28,500

10,000 53,004.3 56,518.35 56,321.7 57,000 56,982.9

Table 14 Comparison proposed
MOWOA with other studies

References Techniques N Remark

[49] PSO-based multiple-sink 300 Energy decreased

[50] PSO with exhaustive search 300 Lifetime increased

[51] Multiple sink location 100 Energy decreased

Proposed MOWOA 1000:10,000 Optimal sink node location

6 Conclusions and future works

In this paper, the whale optimization algorithm (WOA)
has been adapted to optimize the multiple sink node loca-
tions in large-scale wireless sensor networks (LSWSNs)
and is termed as (MOWOA). To achieve that, new fitness
functions are formulated to choose the minimal cardinal-
ity of sink nodes and reduce the total energy consumption.
Also, there are four measures methods were used: (IGD),
(GD), metric of spread and metric of spacing to evaluate
the proposed MOWOA. According to experiments revealed
that the proposed MOWOA can find the optimal Pareto
front (PF) and find best of non-dominated solutions in
comparison with four well-known optimization algorithms
such as multi-objective grasshopper optimization algorithm
(MOGOA), multi-objective salp swarm algorithm (MSSA),
multi-objective gray wolf optimization (MOGWO), multi-

objective particle swarm optimization (MOPSO). Generally
speaking, according to the reported results, the proposed
MOWOA has been obtained a better efficiency in reduc-
ing the total power consumption by 26% compared with the
other algorithms. For future studies, MOWOA algorithm can
apply to solve real-world and engineering applications such
as nodes deployment and multi-hop routing between nodes
and cost of sink nodes.
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