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High-throughput protein expression analysis using tissue microarray technology

of a large well-characterised series identifies biologically distinct classes of breast

cancer confirming recent cDNA expression analyses
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Recent studies on gene molecular profiling using cDNA micro-
array in a relatively small series of breast cancer have identified
biologically distinct groups with apparent clinical and prognostic
relevance. The validation of such new taxonomies should be con-
firmed on larger series of cases prior to acceptance in clinical
practice. The development of tissue microarray (TMA) technology
provides methodology for high-throughput concomitant analyses
of multiple proteins on large numbers of archival tumour samples.
In our study, we have used immunohistochemistry techniques
applied to TMA preparations of 1,076 cases of invasive breast can-
cer to study the combined protein expression profiles of a large
panel of well-characterized commercially available biomarkers
related to epithelial cell lineage, differentiation, hormone and
growth factor receptors and gene products known to be altered in
some forms of breast cancer. Using hierarchical clustering meth-
odology, 5 groups with distinct patterns of protein expression were
identified. A sixth group of only 4 cases was also identified but
deemed too small for further detailed assessment. Further analysis
of these clusters was performed using multiple layer perceptron
(MLP)-artificial neural network (ANN) with a back propagation
algorithm to identify key biomarkers driving the membership of
each group. We have identified 2 large groups by their expression
of luminal epithelial cell phenotypic characteristics, hormone
receptors positivity, absence of basal epithelial phenotype charac-
teristics and lack of c-erbB-2 protein overexpression. Two addi-
tional groups were characterized by high c-erbB-2 positivity and
negative or weak hormone receptors expression but showed differ-
ences in MUC1 and E-cadherin expression. The final group was
characterized by strong basal epithelial characteristics, p53 posi-
tivity, absent hormone receptors and weak to low luminal epithe-
lial cytokeratin expression. In addition, we have identified signifi-
cant differences between clusters identified in this series with
respect to established prognostic factors including tumour grade,
size and histologic tumour type as well as differences in patient
outcomes. The different protein expression profiles identified in
our study confirm the biologic heterogeneity of breast cancer and
demonstrate the clinical relevance of classification in this manner.
These observations could form the basis of revision of existing
traditional classification systems for breast cancer.
' 2005 Wiley-Liss, Inc.

Key words: breast cancer; classification; protein expression; tissue
microarray

Routine clinical management of breast cancer relies on tradi-
tional histopathologic classification including tumour grade, histo-
logic tumour type, carcinoma size and lymph node stage. Despite
the overall association of these variables with prognosis and out-
come,1 these systems remain relatively weakly predictive of
behaviour in some circumstances. Tumours of apparently homoge-
nous morphologic character vary in response to therapy and have
divergent outcomes.2

In addition, the current classification methods are descriptive
and relatively subjective with reliance on assessment by expert
histopathologists. Furthermore, the histologic appearance of the
tumours cannot fully reveal the underlying complex genetic altera-
tions and the biologic events involved in their development and
progression. Intuitively, this requires development of a new classi-

fication based on key molecular events involved in the process of
carcinogenesis, providing a molecular explanation for the different
morphologic phenotypes and behaviours. The cellular and molec-
ular heterogeneity in breast cancer and the large number of molec-
ular events involved in controlling cell growth, differentiation,
proliferation, invasion and metastases3 emphasize the importance
of studying multiple molecular alterations in concert. Recent high-
throughput genomic studies have offered the opportunity to chal-
lenge the molecular complexity of breast cancer and provided evi-
dence for classifying breast cancer into biologically and clinically
distinct groups based on gene expression patterns.4–7 Such new
molecular taxonomies have identified many genes, some of which
are being proposed as candidate genes for subgrouping breast can-
cer. Such studies have been applied on a relatively small number
of tumours and require validation in large series and comparison
with traditional classification systems prior to acceptance in clini-
cal practice. This can be achieved using high-throughput tissue
screening tissue microarray (TMA) technology, which allows con-
comitant analyses of many proteins on a large number of tumour
samples8 and provides new opportunities to examine combined
protein expression profiles in breast cancer to determine their rele-
vance and ability to challenge existing taxonomy.

Clustering is the grouping of a collection of objects into popula-
tions by calculating mathematical resemblances between individu-
als, where objects in the same cluster are more closely related to
each other than those assigned to another cluster.9 Thus hierarchi-
cal clustering analysis is a powerful technique for class discovery;
however, it does not provide information about the influence of
each object in each cluster with respect to other groups. Further
analyses of the cluster data can be provided by the analyses of data
belonging to each cluster using artificial neural networks (ANNs).
ANNs are a form of artificial intelligence that have found applica-
tions in different fields, including the medical field, and have
given superior results to the standard statistical methods.10,11 One
of the important advantages of ANN over other standard statistical
approaches is its ability to model complicated data with nonlinear
relationships. This type of ANN is a powerful tool for analyzing
large complicated data containing a high level of background
noise.12

Thus, in our study, IHC was applied to TMA sections of a large
series of invasive breast cancer using a panel of the most relevant
biomarkers. The IHC results were analyzed using hierarchical
clustering and ANN to categorize cases into groups and to exa-
mine the driving biomarker in each group. Then, the associ-
ation between these groups and the different clinicopathologic
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parameters was studied to examine their biologic and prognostic
implications.

Material and methods

Patients

A consecutive series of 1,944 cases of primary operable inva-
sive breast carcinoma from patients presenting from 1986–1998
and entered into the Nottingham Tenovus Primary Breast Carci-
noma Series were used. Data on histologic grade,13 histologic
tumour type,14 vascular invasion,15 tumour size and lymph node
stage are routinely assessed and recorded in the database as well
as patient information such as age and menopausal status. The
mean survival for this subgroup of the Series was 57 months
(range 1–192 months). Information on local, regional and distant
recurrence and survival is maintained on a prospective basis.
Patients were followed up at 3-month intervals initially, then every
6 months, then annually for a median period of 58 months. The
disease-free interval was defined as the interval (in months) from
the date of the primary treatment to the first locoregional or distant
metastatic recurrence. The overall survival was taken as the time
(in months) from the date of the primary treatment to the time of
death.

At the time of the primary diagnosis, 654 (61%) of the patients
had lymph node-negative disease and 419 (39%) had positive
lymph nodes (332 cases with 1–3 positive nodes, 87 cases with 4
or more positive). A total of 1,076 cases were informative for all
markers. Frequencies for different histologic tumour types and
grades are shown in Table I.

Tissue microarray construction

Breast cancer TMA were prepared as described previ-
ously.8,16,17 Briefly, cores of 0.6 mm thickness were obtained from
the most representative areas of the tumours then reembedded in
microarray blocks. Each case was sampled twice; one core was
obtained from the centre and the other from the periphery of the
tumour. TMAs of 100 cases per block were made.

Immunohistochemistry

Immunohistochemical staining for the sections was performed
using the streptavidin-Biotin Complex method using a large panel
of well-characterized commercially available tumour markers

(Table 2). To avoid loss or decline of immunoreactivity of tissue
sections with increasing storage time,18 sections from TMA blocks
were cut shortly prior to staining of each antibody.

Immunohistochemistry scoring

The modified histochemical score (H-score)19 was used because
it includes a semiquantitative assessment of both the intensity of
staining and the percentage of positive cells. For the intensity, a
score of 0 to 3, corresponding to negative, weak, moderate and
strong positivity, was recorded. In addition, the percentage of pos-
itive cells at each intensity was estimated. The H-score is calcu-
lated as 0 3 negative % 1 1 3 weak % 1 2 3 moderate % 1
3 3 strongly stained %. The range of possible scores is thus 0 to
300. H-score and similar semiquantitative scoring systems have
been successfully used for TMA evaluation.20–22 By using such a
score, we were able to explore rationalization of our cases into
biologically relevant groups depending on different levels of
expression, which could not be obtained by using simpler scoring
methods (e.g., positive vs. negative).

Two cores were evaluated from each tumour. Each core was
scored individually, then the mean of the 2 readings was calcu-
lated. If one core was uninformative (either lost or contained no
tumour tissues), the overall score applied was that of the remain-
ing core. Previous studies have validated the use of one core to
study the expression of tumour markers having heterogeneous dis-
tribution.16,17 One observer scored all cases, which were
rechecked randomly by the same investigator after a period of
time. A good correlation was found between the 2 estimations.

Selection of the biochemical markers

For clustering analyses, we used a large panel of tumour
markers (Table II). Most of the proteins selected to study in our
work have a well-established role in breast carcinogenesis.3 In
addition, the gene transcripts of these proteins have been reported
to be important candidate discriminator genes in stratifying breast
cancer into distinct groups based on previous cDNA microarray
studies.4,5,23 Furthermore, some of these markers have been
reported to have prognostic and predictive power in some series of
breast cancers,24 and finally we used some markers to detect spe-
cific forms of differentiation.

The amount of information generated in our study was large
and multidimensional (1,076 3 26 data points], being based on 26
immunohistochemical markers studied in 1,076 invasive breast
cancer cases. For further weighting analyses using ANN, we
reduced the number of markers analyzed to avoid the background
noise that may be produced. For this analysis, we used a subset of
markers whose expression patterns showed marked variability
among the tumour groups according to their mean level of expres-
sion and those known to have key biologic roles in breast cancer.

Cluster analyses (hierarchical clustering)

Hierarchical cluster analysis was conducted based on Euclidean
distance measure. We used a complete linkage cluster algorithm
implemented in the program Statistica (Statsoft, www.statsoft.
com, Tulsa, OK). The closest tumours were merged in an agglom-
erative way by identifying the pairs of cases that were most similar
to each other, as determined by their correlation coefficient across
all markers, then a new case is added to the cluster by selecting
the one with the greatest closeness to the cluster. By using this
method, the closest tumours merged in an agglomerative way, and
then we could cluster the breast cancers on the basis of similarity
of expression of the markers used. Groups within the cluster anal-
ysis were identified by segregating the data by a Euclidian dis-
tance of 860. This value was selected because use of a lower
distance would result in a much greater number of clusters.

ANN model development and parameterisation

We used a three-layer MLP-ANN with a back-propagation
algorithm and a sigmoid activation function, an approach that has

TABLE I – FREQUENCIES AND PERCENTAGE OF DIFFERENT HISTOLOGIC
TUMOUR TYPES AND GRADES

No. %

Tumour type
Invasive ductal/NST 650 60.5%
Tubular mixed 171 15.9%
Medullary 30 2.8
Typical 4
Atypical 26
Lobular 112 10.4%
Classical 66
Alveolar 2
Solid 4
Tubulo-lobular 3
Mixed 37
Tubular 27 2.5%
Mucinous 11 1%
Invasive cribriform 5 0.5%
Invasive papillary 3 0.3%
Mixed NST & lobular 37 3.4%
Mixed NST & special type 24 2.2%
Other rare types 4 0.4%

Tumour grade
1 160 14.9%
2 343 31.9%
3 572 53.2%

NST, no special type.
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received wide application in the medical field.12,25 Prior to train-
ing, the data were scaled linearly between 0 and 1 using mini-
mums and maximums. The MLP architecture consisted of 13
inputs (representing the 13 markers used in our study), 60 hidden
nodes (optimized for performance on blind data results not pre-
sented) and 6 outputs each representing an individual group. The
initial weights of the network were randomized with a low stand-
ard deviation of 0.01, a constrained approach designed to maxi-
mize the accuracy of the analysis of weights. In the data set, each
of these outputs were encoded with Boolean representation. The
ANN model was trained until the performance for predictions on
blind data failed to improve for 20,000 epochs. Once training and
optimization were complete across a range of architectures based
on the convergence of error, weighting of interconnections in the
ANN model were analyzed to determine the relative importance
of each input variable. This approach has some inherent sources of
error, as it is a linearization of the nonlinear ANN model. To mini-
mise these errors, the initial weights of the model were rando-
mised with a low standard deviation (a constrained approach
designed to amplify the importance of features within the weight-
ing analysis). Further confidence can be gained in the parame-
terisation results because the data were scaled as described
earlier and the models used in the analysis had a good predictive
performance.

Weighting analyses were conducted by multiplying the weight
of the link between input and hidden nodes by the link between
the corresponding hidden and output nodes, then summing the val-
ues for each input to determine the weighting for that input. The
importance value obtained for each input provides a measure of its
influence when absolute/unsigned weight values were used and
indicated whether that influence is positive or negative when
signed values were used indicating if these inputs drive into or
away from a certain group.26 By parameterization of ANN mod-
els, inputs that have little or no influence on the output can be
excluded.

Associations with clinicopathologic features

To investigate the relationship of the classified groups with
tumour and patient characteristics and patient outcome, statistical
analyses were carried out using the v2 test with the SPSS statistical
software, version 10.0.

Results

Based on the immunohistochemical data of all markers used, 6
main clusters could be identified at Euclidean distance 860 of the
dendrogram (Fig. 1). Group 1 and 2 merge to form a single cluster
then also merge with group 3 to form one main cluster at a higher
level. On the other side of the dendrogram, clusters 4, 5 and 6 are
derived from a common branch, which splits to give a separate
branch for group 4 and a common branch that then divides further
into clusters 5 and 6. The ANN models developed based on these

TABLE II – SOURCE, DILUTION AND PRETREATMENT OF ANTIBODIES USED

Antibody, clone Dilution Source Pretreatment

Luminal phenotype
CK 7/8 [clone CAM 5.2] 1:2 Becton Dickinson Microwave
CK 18 [clone DC 10] 1:50 DakoCytomation Microwave
CK 19 [clone BCK 108] 1:100 DakoCytomation Microwave

Basal phenotype
CK 5/6 [cloneD5/16134] 1:100 Boehringer Biochemica Microwave
CK 14 [clone LL002] 1:100 Novocastra Microwave
SMA [clone 1A4] 1:2000 DakoCytomation No
p63 ab-1 [clone 4A4] 1:200 Neomarkers No

Hormone receptors
ER [clone 1D5] 1:80 DakoCytomation Microwave
PgR [clone PgR 636] 1:100 DakoCytomation Microwave
AR [clone F39.4.1] 1:30 Biogenex Microwave

EGFR family members
EGFR [clone EGFR.113] 1:10 Novocastra Microwave
c-erbB-2 1:250 DakoCytomation No
c-erbB-3 [clone RTJ1] 1:20 Novocastra Microwave
c-erbB-4 [clone HFR1] 6:4 Neomarkers No

Tumour suppressor genes
p53 [clone DO7] 1:50 Novocastra Microwave
BRCA1 Ab-1 [clone MS110] 1:150 Oncogene Research Products Microwave
Anti-FHIT [clone ZR44] 1:600 Zymed Laboratories Microwave

Cell adhesion molecules
Anti E-cad [clone HECD-1] 1:10 then 1:20 Zymed Laboratories Microwave
Anti P-cad [clone 56] 1:200 BD Biosciences Microwave

Mucins
NCL-Muc-1 [clone Ma695] NCL- 1:300 Novocastra Microwave
Muc-1 core [clone Ma552] 1:250 Novocastra Microwave
NCL muc2 [clone Ccp58] 1:250 Novocastra Microwave

Apocrine differentiation
Anti-GCDFP-15 1:30 Novocastra No

Neuroendocrine differentiation
Chromogranin A [clone DAK-A3] 1:100 DakoCytomation Microwave
Synaptophysin [clone SY38] 1:30 DakoCytomation Microwave

TABLE III – MARKERS OF HIGH TO MODERATE INFLUENCE ON THE
GROUPS BASED ON ABSOLUTE WEIGHTINGS

Group Markers of high to moderate absolute weightings

Group 1 AR, nBRCA1, GCDFP, c-erbB-21

Muc1, CK 18, E-cad, ER2

Group 2 AR, nBRCA1, c-erbB-2, CK181

E-cad, muc1, GCDFP, p532

Group 3 c-erbb-2, CK18, AR, GCDFP1

Muc1, ER, E-cad, p532

Group 4 c-erbB-2, E-cad, nBRCA1, p531

EGFR, muc12

Group 5 CK 18, cerbB-2, AR, p531

ER, CK 5/6, nBRCA1, chromongranin2

Group 6 c-erbB-2, AR, CK 18, ER1

p53, nBRCA1, Muc 1, CK5/62

1Markers with high absolute weighting values.–2Markers with mod-
erate absolute weighting values.
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clusters were able to predict classes 1, 2, 4, 5 and 6 with 100%
correct prediction rates. Group 3 was predicted with 99.57% accu-
racy (1 misclassification out of 234, misclassified as group 2).

Groups’ description according to weighting analyses

Analysis and description of each group was performed based on
the means and the standard deviation (SD) of the mean of expres-
sion of the markers in each group (Fig. 2) and ANN, as described
above. Figures 3 and 4 show the absolute and the signed weighting
values from ANN among the 6 groups.

Analysis of the absolute weightings indicated that the inputs
could be ranked in a descending order (Fig. 3). Markers of high to
moderate absolute weighting values are summarized in Table III.
Inputs of little influence (low absolute weighting values) were
ignored because they had relatively little or no effect on driving
their corresponding groups.

Group 1, n5 336 (31.2%), and group 2, n5 180 (16.7%)

Both groups showed broadly similar expression patterns being
derived from a common branch in the cluster tree (Fig. 1). They
were characterized in general by moderate to strong expression of
the luminal markers as well as moderate to strong MUC1 expres-
sion. Both groups contained breast cancers that were mainly hor-
mone receptor positive with occasional expression of the classical
basal markers. The low means of expression of c-erbB-2 and p53
indicated the predominant negative phenotype of both markers in
both groups. Few cases were found to express c-erb-B2 at low lev-
els. Both groups were broadly similar; however, we found a dis-
tinct difference regarding c-erbB-3 and c-erbB-4 expression.
Group 1 showed relatively stronger combined expression of
c-erbB-3 and c-erbB-4 compared to group 2.

In addition, the mean of expression of nuclear BRCA1 was
lower in group 1 than in group 2. These findings were confirmed
by ANN. Nuclear BRCA1 expression was an important discrimi-
nating feature in both groups, as reflected by its high absolute
weighting values. Unexpectedly, we also found from signed
weightings analysis that smooth muscle actin had a high positive
weight value, driving cases into group 1; the signed weighting
analysis sometimes misrepresents general trends by cancellation
of positive and negative elements if there are 1 or 2 strong nega-
tive or positive values in a predominance of opposite but weaker
values. Furthermore, because weighting analysis is a linearization
of the aggregate of 2 levels in the ANN, the levels may be strongly

negative and thus by multiplication the overall results are strongly
positive.

Group 3, n5 234 (21.7%)

This group showed common features with groups 1 and 2,
namely strong luminal differentiation and MUC1 overexpression.
Group 3, however, was characterized by overexpression of
c-erbB-2. In addition, group 3 mainly, but not exclusively, con-
sisted of tumours that were hormone receptor negative or weakly
expressing, reflected by low mean H-score levels of ER, PgR and
AR. The basal phenotype was detected in a higher proportion of
cases than seen in groups 1 and 2. ANN confirmed c-erbB-2 as a
key driver for membership of this group, as shown by relatively
high mean and absolute weighting values. It also confirmed the
relevance of negative or weak hormone receptor expression.

Group 4, n5 4 (0.4%)

This cluster contained only 4 tumours, thus making it difficult
to determine which features were driving membership of the
group. However, this group showed high mean levels of expres-
sion of nuclear BRCA1, p53 and the basal markers. A basal phe-
notype was detected in 2 cases by expression of CK5/6, whereas
all 4 cases were P-cadherin positive, also recognized as a basal
marker. The luminal markers means were of low to moderate lev-
els. Two important features of this group were the highest EGFR
expression and the absolutely negative ER and PgR phenotype.

Group 5, n5 183 (17%)

In group 5, luminal differentiation was low with predominantly
absent hormone receptor expression. High p53 protein expression
was a characteristic feature, which distinguished this group from
the others. Expression of c-erbB-2 in this group was uncommon,
with a low mean compared to other groups. In addition, nuclear
BRCA1 was markedly different from other groups, with either
negative or reduced levels of BRCA1 expression. The dominant
expression of the basal epithelial markers was mainly confined to
this group, although rarely, individual cases showed expression in
the other groups.

Group 6, n5 139 (12.9%)

Although this group was derived from a separate branch in the
dendrogram, it had some homology to group 3, as reflected by
high mean levels of expression of c-erbB-2, a negative or weak
hormone receptor phenotype and moderate to strong luminal
markers expression. Two distinct differences were identified:
weak/negative MUC1 and strong positive E-cadherin were seen in
group 6 compared to strong positive expression of MUC1 and neg-
ative or weak E-cadherin in group 3. The negative or the very
weak expression of MUC1 in group 6 was the characteristic fea-
ture that caused group 6 to be derived from a separate branch in
the dendrogram. The ANN signed weighting results reflected these
data, demonstrating high positive MUC1 and high negative E-cad-
herin weights in group 3 with high positive E-cadherin and high
negative MUC1 in group 6.

Associations of the groups with clinicopathologic parameters

Significant differences between the groups with respect to
tumour grade, size and lymph node stage were identified (Table IV).
The distribution of tumour grades among the different clusters
was highly significantly different (v2 5 260.552, p < 0.001];
grade 3 carcinomas were observed in 37%, 18.3%, 59.8%, 100%,
88.5% and 78.4% of groups 1, 2, 3, 4, 5 and 6, respectively. The
classification of tumours was also significantly related to tumour
size (v2 5 33.593, p < 0.001]; large tumour sizes were more fre-
quently noticed in the last 4 groups compared to groups 1 and 2.
Some differences were noticed regarding nodal stage among the
groups (v2 5 21.198, p 5 0.020); node-negative disease was more
frequently seen in group 2 and metastases to 4 or more lymph
nodes was more prevalent in group 5. In addition, significant

FIGURE 1 – Cluster tree diagram of all tumours clustered into 6
groups at Euclidean distance of 860 (arrow). Clusters are arranged
from left to right, starting from cluster 1 and ending at cluster 6.
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differences were noticed among clusters in relation to patient age
(v2 5 33.553, p 5 0.004; Table V).

Highly significant differences were observed among the groups
in relation to histologic tumour types (v2 5 231.479, p < 0.001).
Ductal/no special type (NST) was more or less distributed equally
in all groups, with the exception of group 2, which showed the
lowest frequency of invasive NST carcinomas. Tubular mixed car-
cinomas, lobular and other tumours of special morphology were
predominantly seen in groups 1 and 2 and to a lesser degree in
group 3. Medullary tumours (both of typical and atypical patterns)
were predominantly confined to groups 5 and 3 (Fig. 5).

Survival analyses

As shown by Kaplan-Meier survival analyses, molecular clus-
tering analysis was highly significantly associated with overall
survival (OS) and disease-free survival (DFS). The highest fre-
quency of breast cancer mortality was seen in patients whose
tumours belonged to group 5. A lower, but still high, frequency
was seen in patients with tumours clustered in groups 3 and 6
(v2 5 33.107, p < 0.001; Table IV). Significant associations
between the groups and outcome were observed on Kaplan-Meier
survival analyses. The OS and DFS were the poorest for group 5,
and the longest survivals were seen in groups 1 and 2 (Figs. 6 and 7).
No reported deaths due to breast cancer were seen in patients with
tumours in group 4, and neither recurrence nor distant metastases
were noted during the period of follow-up in this group.

Cox regression analysis was performed to evaluate the inde-
pendent prognostic effect of the clustering. This was performed
with inclusion of the 3 most important and well-recognised param-
eters related to patient outcome, namely histologic grade, tumour
size and lymph node stage. Multivariate analysis demonstrated the
independent prognostic effect of the molecular clustering in pre-
dicting patient outcomes, independent of tumour grade, size and
nodal stage (Tables VI and VII).

Discussion

Our findings, using a large panel of markers, have identified dis-
tinct protein expression patterns, which defined 6 classes of breast
cancer. This diversity in protein expression patterns reflects the
complex heterogeneous molecular nature of this disease.

Analyses of the means and weightings were carried out to deter-
mine the relative importance of each variable to each group. We
demonstrated that AR, c-erbB-2, CK18, MUC1, CK5/6, p53,
nuclear BRCA1, ER and E-cadherin were the driving key markers
and the most important discriminators among different clusters.
We will focus the discussion on these markers.

To summarise our results, groups 1 and 2 as identified by cluster
analysis contain invasive breast cancers that are luminal epithelial
cell and hormone receptor positive; group 3 is c-erbB-2-driven,
hormone receptor weak/negative and strongly MUC1 positive
with altered E-cad expression; group 5 is p53-driven, hormone

FIGURE 2 – Results of mean of expression among different groups.
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receptor negative but consists of tumours that are in general basal
marker positive; and finally, group 6 bears c-erbB-2 positive, hor-
mone receptor weak/negative and MUC1 weak/negative and E-
cad strong positive breast cancers. Group 4 consists of only 4
tumours, making it difficult to give a general description of the
features of that cluster; however, it appears to be characterized by
a basal phenotype with negative hormone receptor expression and
strong expression of c-erbB2, p53 and nuclear BRCA1. Our find-
ings are broadly comparable to clusters described in previous
cDNA-based clustering studies,4,5 where breast cancers have been
stratified into 4 groups: (i) luminal and ER positive; (ii) basal and
ER negative; (iii) c-erbB-2 positive and ER negative or low; and
(iv) normal breast cluster.

It has been postulated that any tumour biology reflects to some
extent the biology of the cell of origin at the time of initiation and
that it follows distinct pathways related to the cell of origin.
Tumours originating from more undifferentiated epithelial cells
have a rapid growth pattern and more aggressive behaviour and
outcome compared with those originating in more differentiated
epithelial cells.27 Two of the important discriminator proteins, the
luminal epithelial cytokeratin CK18 and the basal epithelial cyto-
keratin CK5/6 identified in our study, relate to the mammary gland
anatomy and cellular structure of its parenchymal tissue. Two pre-

vious studies using gene expression4 and protein expression
patterns28 have demonstrated distinctive patterns of luminal and
basal cytokeratin expression in breast cancer. Our findings are
consistent with these reports, with groups 1 and 2 representing a
more differentiated luminal phenotype and group 5 a less differen-
tiated basal phenotype, the luminal expression-negative group.

We have examined whether there were associations between
different protein expression patterns within groups and the cellular
phenotype identified by these luminal and the basal markers.
Tumours expressing luminal and basal markers displayed remark-
ably different patterns of other proteins in addition to cytokeratins,
which may be attributable to their evolution through distinct cell
linage or differentiation related to gene expression characteristics.
For example, p53 protein expression was mainly confined to group
5, whose tumours were predominantly of the basal phenotype.
These findings can be explained by the postulate that subsets of
breast cancer exist that are either derived from different normal
cell populations or differentiate along different pathways as a con-
sequence of having different alterations in the control mechanisms
of cell proliferation and hence neoplastic progression; this may be
p53-dependent in the tumours with a less differentiated, basal phe-
notype and p53-independent in those tumours with a more differ-
entiated, pure luminal form. The existence of p53 mutations by

FIGURE 3 – Results of absolute weightings among different groups.
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chance in the later subset cannot, however, be excluded,29,30 as
shown by our finding that occasional tumours in groups 1, 2, 3 and
6 exhibited p53 expression. This supports the suggestion that cell
type-specific genetic pathways are maintained in distinct genetic
evolutionary pathways in mammary carcinogenesis.

Known associations between the markers used in these studies
support the biologic significance of these clustering analysis
results. For example, the known associations between luminal epi-
thelial differentiation and positive ER status, between basal differ-
entiation and negative ER status are established,4,31–33 as are those
between positive p53 expression and BRCA1 mutation.34 Another
interesting example is the inverse association between MUC1
expression and E-cadherin immunopositivity, which was typically
noticed in groups 3 and 6 and which has been reported in previous
in vitro studies.35–37

Some associations would not be expected; for example, the com-
bined strong expression of p53 and c-erbB-2 proteins occurred rarely
in this large series. The same findings have been reported in 2 breast
cancer studies: by examination of protein expression of p53 and
c-erbB-238 and by determination of p53 mutation and c-erbB-2
amplification.39 These findings imply that breast carcinogenesis

evolves in parallel pathways with different underlying, partially inde-
pendent, partially overlapping mechanisms of carcinogenesis.

It is evident that the observed molecular heterogeneity of the
tumours studied is not fully reflected in their morphologic appear-
ance; tumours of apparently similar morphology have biologically
different behaviours. We have identified by this clustering analysis
of immunohistochemical expression of a large number of markers
that there are biologically and clinically distinct groups within
apparently homogenous tumours. For example, grade 3 carcino-
mas were found in all groups. Another example is the hormone
receptor-negative or weakly expressing tumours, which were
mainly clustered in the last 4 groups. Each group had a relatively
distinct protein expression pattern and clinically distinct behav-
iour, in spite of being hormone receptor negative or weak. Such
discrimination could have therapeutic implications; patients
belonging to a certain group could be candidates for specific ther-
apy, which was not optimal for patients from other groups.
Clearly, this requires further study.

Despite the above observations, we have identified some broad
relationships between molecular phenotypes and morphologic
characteristics. Highly significant but not absolute associations

FIGURE 4 – Results of signed weighting among different groups.
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have been noticed between the clusters identified in this series and
2 important prognostic parameters, grade and tumour size. In addi-
tion, there were significant differences in the distribution of the
clusters by histologic tumour types. These findings indicate that
different molecular pathways in breast carcinogenesis are associ-
ated with specific tumour morphologies, as has been suggested by
previous genetic studies.40,41 It is worthwhile to note that the
molecular grouping in the present series was determined by the
expression of a group of proteins not by the expression of a single
marker in isolation. This highlights the importance of studying
groups of marker proteins in concert instead of focusing on a cer-
tain gene, protein or pathway. A significantly different age distri-
bution was also noticed amongst groups where young patient age
was more frequently seen in group 5 compared to other groups. In
this series, group 5 exhibited the most aggressive behaviour com-
pared to other groups that support previous observations that
breast cancer in young women have lower hormone receptor level,
higher proliferation and worse prognosis compared to those in
older ages.42–44

Survival analyses in our study revealed significant differences
in DFS and OS among clusters. Group 5 represents a distinct
entity that was associated with a p53-positive and basal-positive
phenotype. Both of these variables are known to be associated
with aggressive behaviour and poor outcome.5,33,38,45 In addition,
BRCA1 alteration was a common feature in that group. An associ-
ation between decreased BRCA1 mRNA and increased metastatic
potential in sporadic breast cancer has been reported,46 which is
consistent with the aggressive behaviour of this group in the
present series. The same observation could explain the absence of
metastases or cancer-related death in group 4, which was charac-
terized by strong positive expression of BRCA1 in spite of the
strong expression of other poor prognostic markers such ac p53,

c-erbB-2 and EGFR, together with the negative hormone receptor
phenotype. However, the limited number of cases in that group
precludes more definitive extrapolation.

C-erbB-2 is recognized as an important molecular marker associ-
ated with poor overall survival and disease-free survival.47 It has a
therapeutic value in selecting cases more likely to be responsive to c-
erbB-2-directed immunotherapy.48 In our series, c-erbB-2 was a driv-
ing marker into 2 groups (groups 3 and 6). Group 3 was characterized
mainly by c-erbB-2 expression, MUC1 mucin overexpression and
reduced E-cadherin expression as determined by the mean values in
the groups and by weighting analyses. The increased tumour invasive
and metastatic potential associated with c-erbB-2 overexpression49

could explain the unfavorable prognosis found. Overexpression
expression of MUC1, together with the negative or reduced E-cad-
herin expression, could be additional features that reduce cell to cell
adhesion, thus facilitating cell detachment and metastases.37,50 The
reverse was identified in group 6, into which c-erbB-2 was also a
driving marker; however, within this group tumours tended to exhibit
negative to weak MUC1 expression and relatively stronger E-cad-
herin expression compared to group 3. These differences in molecu-
lar pattern of groups 3 and 6 may explain the relatively poorer DFS

TABLE IV – GROUP DISTRIBUTION IN RELATION TO DIFFERENT CLINICOPATHOLOGIC PARAMETERS

Feature
Group

G1 G2 G3 G4 G5 G6

Grade
1 73 (21.8%) 47 (26.1%) 29 (12.4%) 0 6 (3.3%) 5 (3.6%)
2 138 (41.2%) 100 (55.6%) 65 (27.8%) 0 15 (8.2%) 25 (18%)
3 124 (37%) 33 (18.3%) 140 (59.8%) 4 (100%) 162 (88.5%) 109 (78.4%)
Total 335 180 234 4 183 139
p - value < 0.001

Size
� 1.5 cm 126 (37.5%) 76 (42.2%) 69 (29.5%) 0 35 (19.1%) 34 (24.5%)
> 1.5 cm 210 (62.5%) 104 (57.8%) 165 (70.5%) 4 (100%) 148 (80.9%) 105 (75.5%)
Total 336 180 234 4 183 139
p - value < 0.001

Lymph node stage
1 201 (60%) 125 (69.8%) 133 (57.1%) 2 (50%) 121 (66.1%) 72 (51.8%)
2 108 (32.2%) 45 (25.1%) 79 (33.9%) 2 (50%) 42 (23%) 56 (40.3%)
3 26 (7.8%) 9 (5%) 21 (9%) 0 20 (10.9%) 11 (7.9%)
Total 335 179 233 4 183 139
p - value 5 0.020

Death
No 317 (96.6%) 169 (93.9%) 201 (87%) 4 (100%) 147 (83.1%) 124 (89.9%)
Yes 11 (3.4%) 11 (6.1%) 30 (13%) 0 30 (16.9%) 14 (10.1%)
Total 328 180 231 4 177 138
p - value < 0.001

FIGURE 5 – Clustering group distribution among different histologic
tumour types (v2 5 231.479, p < 0.001).

TABLE V – AGE DISTRIBUTION AMONG DIFFERENT GROUPS
(v2 5 33.554, P 5 0.004)

Patient age in years

Group � 35 36–45 46–55 > 55 Total

Group 1 15 (4.5%) 58 (17.3%) 103 (30.7%) 160 (47.6%) 336
Group 2 6 (3.3%) 26 (14.4%) 67 (37.2%) 81 (45%) 180
Group 3 7 (3%) 43 (18.4%) 71 (30.3%) 113 (48.3%) 234
Group 4 0 1 (25%) 0 3 (75%) 4
Group 5 16 (8.7%) 49 (26.8%) 56 (30.6%) 63 (33.9%) 183
Group 6 4 (2.9%) 25 (18%) 34 (24.5%) 76 (54.7%) 139
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and OS of those patients with tumours in group 3 compared to those
in group 6.

Although groups 1 and 2 are broadly similar, we identified dif-
ferences in patient outcome, especially obvious in DFS. A pre-
vious cDNA microarray series has also recorded that the luminal
ER-positive group can be further divided into 2 groups with differ-
ent outcomes (luminal A, luminal B).6 We have no clear explana-
tion for these differences. However, we noticed overexpression of
c-erbB-3 and c-erbB-4 in group 1 in contrast to group 2, where
relatively weak expression was seen. The association of both
c-erbB-3 and c-erbB-4 overexpression with the classical prognos-
tic parameters and outcome has been poorly documented. How-
ever, some studies have reported an association with favorable
outcome; longer overall survival has been reported in patients

whose tumours overexpressed c-erbB-3 and c-erbB-4 mRNAs.51

More recently, another study has demonstrated c-erbB-4 overex-
pression to be associated with a favourable outcome.52 This is
consistent with the better outcome we have noted in patients with
cancers placed in group 1 compared to group 2.

The significant prognostic impact of the clustering on predicting
outcome was independent in multivariate analysis from the 3 most
important prognostic parameters in breast cancer: tumour grade,
tumour size and lymph node stage. This further supports the rele-
vance and importance of such a method of molecular classification
and indicates that classification of breast cancer in a manner like
this may be of value in the future in the evaluation and prediction
of outcome in breast cancer.

In conclusion, the biologic and clinical significance of a protein
expression-based classification that is described here is supported
by its highly significant correlation with outcome in terms of over-
all survival and disease-free survival, its highly significant associ-
ations with the established prognostic parameters and by the broad
similarities with previous taxonomies used for cDNA microarray
interpretation in breast cancer. Our results show that TMA is an
efficient and reliable tool for high-throughput screening, and our
overall results support the feasibility of improving the classifica-
tion of breast cancer based on a combination of morphologic and
protein expression characteristics.
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